实例介绍
说话人识别MSR Identity Toolkit是微软的声纹识别工具箱。该工具箱包含了常规的基于GMM-UBM方法以及基于i-vector方法的介绍文档与MATLAB源码。在此基础上,加入了个人学习过程中产生对应List的python文件,资料更为完整,对初学者十分有帮助。结合下面的链接中的博客来学习,迅速入门。 https://blog.csdn.net/u010592995/article/details/77340761
【实例截图】
【核心代码】
6783d6f1-1581-481d-b4bb-0ca669a56549
└── MSR Identity Toolkit源码+产生对应的list源码
├── ChangePath.py
├── cmvn.m
├── compute_bw_stats.exe
├── compute_bw_stats.m
├── compute_eer.m
├── config
├── demo_gmm_ubm_artificial.m
├── demo_gmm_ubm.m
├── demo_ivector_plda_artificial.m
├── demo_ivector_plda.m
├── enrollscript.scp
├── enroll_wavtomfc.py
├── exer1.m
├── exer2.m
├── exer.m
├── extract_ivector.exe
├── extract_ivector.m
├── fea_warping.m
├── genlistfor_speaker_models.py
├── genlistfor_trials2.py
├── genlistfor_trials.py
├── genlistfor_ubm_with_inds.py
├── gmm_em.exe
├── gmm_em.m
├── gplda_em.m
├── hamming.m
├── htkread.m
├── htkwrite.m
├── lda.m
├── length_norm.m
├── mapAdapt.exe
├── mapAdapt.m
├── mfcc_cmvn.m
├── model_ivs1.mat
├── model_ivs2.mat
├── part_of_train.lst
├── plda.mat
├── rm_dc_n_dither.m
├── run.sh
├── score_gmm_trials.m
├── score_gplda_trials.m
├── ScoresToEER
│ ├── ScoresToEER456192_40_80
│ │ ├── compute_eer.m
│ │ ├── eer_result.txt
│ │ ├── score_eer.m
│ │ ├── score_eer.sh
│ │ ├── scores_fuweight085_comment_5000.txt
│ │ ├── scores_fuweight086_comment_5000.txt
│ │ ├── scores_fuweight087_comment_5000.txt
│ │ ├── scores_fuweight088_comment_5000.txt
│ │ ├── scores_fuweight089_comment_5000.txt
│ │ ├── scores_fuweight090_comment_5000.txt
│ │ ├── scores_fuweight091_comment_5000.txt
│ │ ├── scores_fuweight092_comment_5000.txt
│ │ ├── scores_fuweight093_comment_5000.txt
│ │ ├── scores_fuweight094_comment_5000.txt
│ │ ├── scores_fuweight095_comment_5000.txt
│ │ ├── scores_fuweight096_comment_5000.txt
│ │ ├── scores_fuweight097_comment_5000.txt
│ │ ├── scores_fuweight098_comment_5000.txt
│ │ ├── scores_fuweight099_comment_5000.txt
│ │ ├── scores_fuweight0_comment_5000.txt
│ │ ├── scores_fuweight1_comment_5000.txt
│ │ ├── scores.mat
│ │ ├── tomat.sh
│ │ └── txtTomat.m
│ ├── ScoresToEER456192_60_100
│ │ ├── compute_eer.m
│ │ ├── eer_result.txt
│ │ ├── score_eer.m
│ │ ├── score_eer.sh
│ │ ├── scores_fuweight085_comment_5000.txt
│ │ ├── scores_fuweight086_comment_5000.txt
│ │ ├── scores_fuweight087_comment_5000.txt
│ │ ├── scores_fuweight088_comment_5000.txt
│ │ ├── scores_fuweight089_comment_5000.txt
│ │ ├── scores_fuweight090_comment_5000.txt
│ │ ├── scores_fuweight091_comment_5000.txt
│ │ ├── scores_fuweight092_comment_5000.txt
│ │ ├── scores_fuweight093_comment_5000.txt
│ │ ├── scores_fuweight094_comment_5000.txt
│ │ ├── scores_fuweight095_comment_5000.txt
│ │ ├── scores_fuweight096_comment_5000.txt
│ │ ├── scores_fuweight097_comment_5000.txt
│ │ ├── scores_fuweight098_comment_5000.txt
│ │ ├── scores_fuweight099_comment_5000.txt
│ │ ├── scores_fuweight0_comment_5000.txt
│ │ ├── scores_fuweight1_comment_5000.txt
│ │ ├── scores.mat
│ │ ├── tomat.sh
│ │ └── txtTomat.m
│ ├── ScoresToEER76032
│ │ ├── comment_5000
│ │ │ ├── compute_eer.m
│ │ │ ├── score_eer.m
│ │ │ ├── scores_fuweight085_comment_5000.txt
│ │ │ ├── scores_fuweight086_comment_5000.txt
│ │ │ ├── scores_fuweight087_comment_5000.txt
│ │ │ ├── scores_fuweight088_comment_5000.txt
│ │ │ ├── scores_fuweight089_comment_5000.txt
│ │ │ ├── scores_fuweight090_comment_5000.txt
│ │ │ ├── scores_fuweight091_comment_5000.txt
│ │ │ ├── scores_fuweight092_comment_5000.txt
│ │ │ ├── scores_fuweight093_comment_5000.txt
│ │ │ ├── scores_fuweight094_comment_5000.txt
│ │ │ ├── scores_fuweight095_comment_5000.txt
│ │ │ ├── scores_fuweight096_comment_5000.txt
│ │ │ ├── scores_fuweight097_comment_5000.txt
│ │ │ ├── scores_fuweight098_comment_5000.txt
│ │ │ ├── scores_fuweight099_comment_5000.txt
│ │ │ ├── scores_fuweight0_comment_5000.txt
│ │ │ ├── scores_fuweight1_comment_5000.txt
│ │ │ ├── scores.mat
│ │ │ └── txtTomat.m
│ │ ├── compute_eer.m
│ │ ├── score_eer.m
│ │ ├── scores_fuweight090_comment.mat
│ │ ├── scores_fuweight090_comment.txt
│ │ ├── scores_fuweight091_comment.mat
│ │ ├── scores_fuweight091_comment.txt
│ │ ├── scores_fuweight092_comment.mat
│ │ ├── scores_fuweight092_comment.txt
│ │ ├── scores_fuweight093_comment.mat
│ │ ├── scores_fuweight093_comment.txt
│ │ ├── scores_fuweight094_comment.mat
│ │ ├── scores_fuweight094_comment.txt
│ │ ├── scores_fuweight095_comment.mat
│ │ ├── scores_fuweight095_comment.txt
│ │ ├── scores_fuweight096_comment.mat
│ │ ├── scores_fuweight096_comment.txt
│ │ ├── scores_fuweight097_comment.mat
│ │ ├── scores_fuweight097_comment.txt
│ │ ├── scores_fuweight098_comment.mat
│ │ ├── scores_fuweight098_comment.txt
│ │ ├── scores_fuweight099_comment.mat
│ │ ├── scores_fuweight099_comment.txt
│ │ ├── scores_fuweight099.mat
│ │ ├── scores_fuweight099.txt
│ │ ├── scores_fuweight0_comment.mat
│ │ ├── scores_fuweight0_comment.txt
│ │ ├── scores_fuweight0.mat
│ │ ├── scores_fuweight0.txt
│ │ ├── scores_fuweight1_comment.mat
│ │ ├── scores_fuweight1_comment.txt
│ │ ├── scores_fuweight1.mat
│ │ └── scores_fuweight1.txt
│ └── ScoresToEER76032_456192_40_80
│ ├── compute_eer.m
│ ├── eer_result.txt
│ ├── score_eer.m
│ ├── score_eer.sh
│ ├── scores_fuweight085_comment_5000.txt
│ ├── scores_fuweight086_comment_5000.txt
│ ├── scores_fuweight087_comment_5000.txt
│ ├── scores_fuweight088_comment_5000.txt
│ ├── scores_fuweight089_comment_5000.txt
│ ├── scores_fuweight090_comment_5000.txt
│ ├── scores_fuweight091_comment_5000.txt
│ ├── scores_fuweight092_comment_5000.txt
│ ├── scores_fuweight093_comment_5000.txt
│ ├── scores_fuweight094_comment_5000.txt
│ ├── scores_fuweight095_comment_5000.txt
│ ├── scores_fuweight096_comment_5000.txt
│ ├── scores_fuweight097_comment_5000.txt
│ ├── scores_fuweight098_comment_5000.txt
│ ├── scores_fuweight099_comment_5000.txt
│ ├── scores_fuweight0_comment_5000.txt
│ ├── scores_fuweight1_comment_5000.txt
│ ├── scores.mat
│ ├── tomat.sh
│ └── txtTomat.m
├── script.scp
├── speaker_model_map.lst
├── test_ivs.mat
├── testscript.scp
├── test_wavtomfc.py
├── trainChangePath.lst
├── train.lst
├── trainscript.scp
├── train_tv_space.exe
├── train_tv_space.m
├── train_tv_space.mat
├── train_wavtomfc.py
├── trials.lst
├── ubm.lst
├── ubmnocmvn_train.mat
├── ubm_train_ivector.m
├── ubm_train_ivector.mat
├── ubm_train.m
├── ubm_train.mat
├── V.mat
└── wcmvn.m
7 directories, 187 files
标签:
小贴士
感谢您为本站写下的评论,您的评论对其它用户来说具有重要的参考价值,所以请认真填写。
- 类似“顶”、“沙发”之类没有营养的文字,对勤劳贡献的楼主来说是令人沮丧的反馈信息。
- 相信您也不想看到一排文字/表情墙,所以请不要反馈意义不大的重复字符,也请尽量不要纯表情的回复。
- 提问之前请再仔细看一遍楼主的说明,或许是您遗漏了。
- 请勿到处挖坑绊人、招贴广告。既占空间让人厌烦,又没人会搭理,于人于己都无利。
关于好例子网
本站旨在为广大IT学习爱好者提供一个非营利性互相学习交流分享平台。本站所有资源都可以被免费获取学习研究。本站资源来自网友分享,对搜索内容的合法性不具有预见性、识别性、控制性,仅供学习研究,请务必在下载后24小时内给予删除,不得用于其他任何用途,否则后果自负。基于互联网的特殊性,平台无法对用户传输的作品、信息、内容的权属或合法性、安全性、合规性、真实性、科学性、完整权、有效性等进行实质审查;无论平台是否已进行审查,用户均应自行承担因其传输的作品、信息、内容而可能或已经产生的侵权或权属纠纷等法律责任。本站所有资源不代表本站的观点或立场,基于网友分享,根据中国法律《信息网络传播权保护条例》第二十二与二十三条之规定,若资源存在侵权或相关问题请联系本站客服人员,点此联系我们。关于更多版权及免责申明参见 版权及免责申明
网友评论
我要评论