在好例子网,分享、交流、成长!
您当前所在位置:首页Others 开发实例一般编程问题 → Deep Time Series Forecasting with Python.pdf

Deep Time Series Forecasting with Python.pdf

一般编程问题

下载此实例
  • 开发语言:Others
  • 实例大小:1.65M
  • 下载次数:4
  • 浏览次数:308
  • 发布时间:2021-01-12
  • 实例类别:一般编程问题
  • 发 布 人:好学IT男
  • 文件格式:.pdf
  • 所需积分:2
 

实例介绍

【实例简介】
Deep Time Series Forecasting with Python. 使用深度学习技术进行时间序列回归预测
DEEP TIME SERIES FORECASTING With PYThon An Intuitive Introduction to Deep learn ing for applied Time series Modeling Dr, n.d lewis Copyright o 2016 by N D. Lewis All rights reserved. No part of this publication may be reproduced, dis- tributed, or transmitted in any form or by any means, including photo- copying, recording, or other electronic or mechanical methods, without the prior written permission of the author, except in the case of brief quo tations embodied in critical reviews and certain other noncommercial uses permitted by copyright law. For permission requests, contact the author t:www.Auscov.com Disclaimer: Although the author and publisher have made every effort to ensure that the information in this book was correct at press time, the author and publisher do not assume and hereby disclaim any liability to any party for any loss, damage, or disruption caused by errors or omissions whether such errors or omissions result from negligence, accident, or any other cause Ordering Information: Quantity sales. Special discounts are available on quantity purchases by corporations, associations, and others. For details emailinfo@nigeldlewis.cOm Image photography by Deanna Lewis with helpful assistance from Naomi lewis ISBN-13:978-1540809087 ISBN-10:1540809080 Contents Acknowledgements Preface vIll How to get the absolute most possible benefit from this book Getting Python Learning Python Using pack 13345 Additional resources to Check Out 1 The Characteristics of Time Series Data Simplified Understanding the Data Generating Mechanism Generating a Simple Time Series using Python Randomness and Reproducibility 12 The Importance of Temporal Order The Ultimate goal For Additional Exploration 15 2 Deep Neural Networks Explained 17 What is a Neural Network? The role of neuron Deep Learning in a Nutshell Generating Data for use with a Deep Neural Netwo Exploring the Sample Data 22 Translating Sample Data into a Suitable Format 25 A Super Easy Deep Neural Network Tool 26 Assessing model performance 2 Additional resources to Check Out 30 3 Deep Neural Networks for Time Series Forecasting the Easy Way 31 etting the data from the i 31 Cleaning up Downloaded Spreadsheet Files Understanding Activation Functions 36 How te 39 ssessln ng Partial Autocorrelation 42 a Neural Network Architecture for Time series Fo 45 Additional resources to Check Out 19 4 A Simple Way to Incorporate Additional Attributes in Your Model 51 Working with Additional Attributes 51 The Working of the Neuron Simplified How a Neural network learns Gradient Descent Clarified How to Easily Specify a Model 59 Choosing a Learning Rate The efficient Way to Run Your Model 62 Additional Resources to Check Out 66 5 The Simple Recurrent Neural Network 67 Why Use Keras? What is a Recurrent Neural Network? Gain Clarity on the role of the Delay Units 71 Follow this Approach to Create Your Train and Test Sets Parameter Sharing Clarified Understand Backpropagation Through Time 73 A Complete Intuitive guide to momentum 76 How to Benefit from Mini Batching 78 Additional Resources to Check Out 81 6 Elman neural networks 83 Prepare You Data for Easy Use 84 How to Model a Complex Mathematical Relationship with No Knowledge Use this Python library for Rapid Results Exploring the Error Surface A Super Simple Way to Fit the Model 91 Additional resources to Check Out 7 Jordan Neural networks 95 The Fastest Path to Data Preparation A Straightforward Module for Jordan Neural Networks Assessing Model Fit and Performance Additional Resources to Check Out .100 8 Nonlinear Auto-regressive Network with Exogenous Inputs 103 What is a narX Network? 103 Spreadsheet Files made easy with Panda 105 Working with macroeconomic Variables 107 Python and Pandas Data Types a Tool for Rapid narX Model Construction How to run the model 115 Additional Resources to Check Out 9 Long Short-Term Memory Recurrent Neural Network 119 Cyclical Patterns in Time Series Data 119 What is an LSTM? 122 Efficiently Explore and Quickly Understand Data 123 The LSTM Memory Block in a Nutshell 127 Straightforward Data Transformation for the Train and Test Sets .128 Clarify the role of Gates 130 Understand the Constant Error Carousel 131 Specifying a LstM Model the Easy Way 132 Shuffling Examples to Improve Generalization 136 A Note on Vanishing gradients Follow these Steps to build a Stateful LSTM ..139 Additional Resources to check Out 144 10 Gated recurrent unit 145 The Gated Recurrent Unit in a nutshell 145 A Simple approach to gated recurrent Unit Construction 148 a Quick Recap 150 How to Use Multiple Time Steps 151 Additional resources to Check Out ..154 11 Forecasting Multiple Outputs 155 Working with Zipped Files 156 How to Work with Multiple Targets .159 Creation of hand Crafted Feature 161 Model specification and Fit Additional Resources to Check Out 12 Strategies to Build Superior Models 169 Revisiting the UK Unemployment Rate Economic Data 169 Limitations of the Sigmoid Activation Function .171 One Activation Function You Need to Add to Your Deep Learning Toolkit.. 172 Try This Simple Idea to Enhance Success A Simple Plan for Early Stopping 180 Additional resources to check Out nex Dedicated to Angela, wife, friend and mother extraordinaire 【实例截图】
【核心代码】

标签:

实例下载地址

Deep Time Series Forecasting with Python.pdf

不能下载?内容有错? 点击这里报错 + 投诉 + 提问

好例子网口号:伸出你的我的手 — 分享

网友评论

发表评论

(您的评论需要经过审核才能显示)

查看所有0条评论>>

小贴士

感谢您为本站写下的评论,您的评论对其它用户来说具有重要的参考价值,所以请认真填写。

  • 类似“顶”、“沙发”之类没有营养的文字,对勤劳贡献的楼主来说是令人沮丧的反馈信息。
  • 相信您也不想看到一排文字/表情墙,所以请不要反馈意义不大的重复字符,也请尽量不要纯表情的回复。
  • 提问之前请再仔细看一遍楼主的说明,或许是您遗漏了。
  • 请勿到处挖坑绊人、招贴广告。既占空间让人厌烦,又没人会搭理,于人于己都无利。

关于好例子网

本站旨在为广大IT学习爱好者提供一个非营利性互相学习交流分享平台。本站所有资源都可以被免费获取学习研究。本站资源来自网友分享,对搜索内容的合法性不具有预见性、识别性、控制性,仅供学习研究,请务必在下载后24小时内给予删除,不得用于其他任何用途,否则后果自负。基于互联网的特殊性,平台无法对用户传输的作品、信息、内容的权属或合法性、安全性、合规性、真实性、科学性、完整权、有效性等进行实质审查;无论平台是否已进行审查,用户均应自行承担因其传输的作品、信息、内容而可能或已经产生的侵权或权属纠纷等法律责任。本站所有资源不代表本站的观点或立场,基于网友分享,根据中国法律《信息网络传播权保护条例》第二十二与二十三条之规定,若资源存在侵权或相关问题请联系本站客服人员,点此联系我们。关于更多版权及免责申明参见 版权及免责申明

;
报警