实例介绍
【实例截图】
【核心代码】
Contents Foreword Preface Acknowledgments About the Author 1 Getting R 1.1 Downloading R 1.2 R Version 1.3 32-bit vs. 64-bit 1.4 Installing 1.5 Microsoft R Open 1.6 Conclusion 2 The R Environment 2.1 Command Line Interface 2.2 RStudio 2.3 Microsoft Visual Studio 2.4 Conclusion 3 R Packages 3.1 Installing Packages 3.2 Loading Packages 3.3 Building a Package 3.4 Conclusion 4 Basics of R 4.1 Basic Math 4.2 Variables 4.3 Data Types 4.4 Vectors 4.5 Calling Functions 4.6 Function Documentation 4.7 Missing Data 4.8 Pipes 4.9 Conclusion 5 Advanced Data Structures 5.1 data.frames 5.2 Lists 5.3 Matrices 5.4 Arrays 5.5 Conclusion 6 Reading Data into R 6.1 Reading CSVs 6.2 Excel Data 6.3 Reading from Databases 6.4 Data from Other Statistical Tools 6.5 R Binary Files 6.6 Data Included with R 6.7 Extract Data from Web Sites 6.8 Reading JSON Data 6.9 Conclusion 7 Statistical Graphics 7.1 Base Graphics 7.2 ggplot2 7.3 Conclusion 8 Writing R functions 8.1 Hello, World! 8.2 Function Arguments 8.3 Return Values 8.4 do.call 8.5 Conclusion 9 Control Statements 9.1 if and else 9.2 switch 9.3 ifelse 9.4 Compound Tests 9.5 Conclusion 10 Loops, the Un-R Way to Iterate 10.1 for Loops 10.2 while Loops 10.3 Controlling Loops 10.4 Conclusion 11 Group Manipulation 11.1 Apply Family 11.2 aggregate 11.3 plyr 11.4 data.table 11.5 Conclusion 12 Faster Group Manipulation with dplyr 12.1 Pipes 12.2 tbl 12.3 select 12.4 filter 12.5 slice 12.6 mutate 12.7 summarize 12.8 group_by 12.9 arrange 12.10 do 12.11 dplyr with Databases 12.12 Conclusion 13 Iterating with purrr 13.1 map 13.2 map with Specified Types 13.3 Iterating over a data.frame 13.4 map with Multiple Inputs 13.5 Conclusion 14 Data Reshaping 14.1 cbind and rbind 14.2 Joins 14.3 reshape2 14.4 Conclusion 15 Reshaping Data in the Tidyverse 15.1 Binding Rows and Columns 15.2 Joins with dplyr 15.3 Converting Data Formats 15.4 Conclusion 16 Manipulating Strings 16.1 paste 16.2 sprintf 16.3 Extracting Text 16.4 Regular Expressions 16.5 Conclusion 17 Probability Distributions 17.1 Normal Distribution 17.2 Binomial Distribution 17.3 Poisson Distribution 17.4 Other Distributions 17.5 Conclusion 18 Basic Statistics 18.1 Summary Statistics 18.2 Correlation and Covariance 18.3 T-Tests 18.4 ANOVA 18.5 Conclusion 19 Linear Models 19.1 Simple Linear Regression 19.2 Multiple Regression 19.3 Conclusion 20 Generalized Linear Models 20.1 Logistic Regression 20.2 Poisson Regression 20.3 Other Generalized Linear Models 20.4 Survival Analysis 20.5 Conclusion 21 Model Diagnostics 21.1 Residuals 21.2 Comparing Models 21.3 Cross-Validation 21.4 Bootstrap 21.5 Stepwise Variable Selection 21.6 Conclusion 22 Regularization and Shrinkage 22.1 Elastic Net 22.2 Bayesian Shrinkage 22.3 Conclusion 23 Nonlinear Models 23.1 Nonlinear Least Squares 23.2 Splines 23.3 Generalized Additive Models 23.4 Decision Trees 23.5 Boosted Trees 23.6 Random Forests 23.7 Conclusion 24 Time Series and Autocorrelation 24.1 Autoregressive Moving Average 24.2 VAR 24.3 GARCH 24.4 Conclusion 25 Clustering 25.1 K-means 25.2 PAM 25.3 Hierarchical Clustering 25.4 Conclusion 26 Model Fitting with Caret 26.1 Caret Basics 26.2 Caret Options 26.3 Tuning a Boosted Tree 26.4 Conclusion 27 Reproducibility and Reports with knitr 27.1 Installing a LaTeX Program 27.2 LaTeX Primer 27.3 Using knitr with LaTeX 27.4 Conclusion 28 Rich Documents with RMarkdown 28.1 Document Compilation 28.2 Document Header 28.3 Markdown Primer 28.4 Markdown Code Chunks 28.5 htmlwidgets 28.6 RMarkdown Slideshows 28.7 Conclusion 29 Interactive Dashboards with Shiny 29.1 Shiny in RMarkdown 29.2 Reactive Expressions in Shiny 29.3 Server and UI 29.4 Conclusion 30 Building R Packages 30.1 Folder Structure 30.2 Package Files 30.3 Package Documentation 30.4 Tests 30.5 Checking, Building and Installing 30.6 Submitting to CRAN 30.7 C Code 30.8 Conclusion A Real-Life Resources A.1 Meetups A.2 Stack Overflow A.3 Twitter A.4 Conferences A.5 Web Sites A.6 Documents A.7 Books A.8 Conclusion B Glossary List of Figures List of Tables General Index Index of Functions Index of Packages Index of People Data Index
标签: R everyone
小贴士
感谢您为本站写下的评论,您的评论对其它用户来说具有重要的参考价值,所以请认真填写。
- 类似“顶”、“沙发”之类没有营养的文字,对勤劳贡献的楼主来说是令人沮丧的反馈信息。
- 相信您也不想看到一排文字/表情墙,所以请不要反馈意义不大的重复字符,也请尽量不要纯表情的回复。
- 提问之前请再仔细看一遍楼主的说明,或许是您遗漏了。
- 请勿到处挖坑绊人、招贴广告。既占空间让人厌烦,又没人会搭理,于人于己都无利。
关于好例子网
本站旨在为广大IT学习爱好者提供一个非营利性互相学习交流分享平台。本站所有资源都可以被免费获取学习研究。本站资源来自网友分享,对搜索内容的合法性不具有预见性、识别性、控制性,仅供学习研究,请务必在下载后24小时内给予删除,不得用于其他任何用途,否则后果自负。基于互联网的特殊性,平台无法对用户传输的作品、信息、内容的权属或合法性、安全性、合规性、真实性、科学性、完整权、有效性等进行实质审查;无论平台是否已进行审查,用户均应自行承担因其传输的作品、信息、内容而可能或已经产生的侵权或权属纠纷等法律责任。本站所有资源不代表本站的观点或立场,基于网友分享,根据中国法律《信息网络传播权保护条例》第二十二与二十三条之规定,若资源存在侵权或相关问题请联系本站客服人员,点此联系我们。关于更多版权及免责申明参见 版权及免责申明
网友评论
我要评论