实例介绍
【实例截图】
【核心代码】
Contents Chapter 1. Mathematical Auxiliaries .........................1 1.1. Matrix Computations ............................................1 Vector and Matrix Products – Determinants and Cofactors – Eigenvalues and Eigenvectors – Decompositions of a Matrix – Linear Systems of Equations – Projectors and Reflectors – The QR-Algorithm – The Moore-Penrose Inverse – Over- and Underdetermined Linear Systems – Rotations in R3 – Matrices with Definite Real Part 1.2. Brief on Vector Analysis ....................................... 17 Notations and Definitions – Differential Rules – Integral Rules – Coordinate-Free Definitions – Potentials and Vector Fields 1.3. Curves in R3 .....................................................25 Curvature and Torsion – Frenet’s Formulas 1.4. Linear Differential Equations .................................. 27 Homogenous Linear Differential Equations with Constant Coefficients – Inhomogenous Linear Differential Equations with Constant Coefficients and Special Right Sides – The General Solution – Example 1.5. Linear Differential Systems of First Order ................... 31 Autonomous Homogenous Systems with Diagonable Matrix – Autonomous Homogenous Systems with Undiagonable Matrix – On Stability – General Linear Systems – Special Right Sides – Boundary Value Problems – Periodic Solutions 1.6. The Flux Integral and its Vector Field . . . . . . . . . . . . . . . . . . . . . . . 38 The Flux Integral – Stationary Vector Fields – Straightening of Vector Fields – Invariants – Transformation – Examples 1.7. Vector Spaces .................................................. 45 Spaces of Continuous Functions – Banach Spaces – Linear Mappings – Linear Functionals and Hyperplanes – Dual Spaces – Hilbert Spaces – Sobolev Spaces – On Boundary Values – Poperties of Hs 0(Ω) and Hs(Ω) – Equivalent Norms on Hs 0(Ω) and Hs(Ω) X Contents 1.8. Derivatives .......................................................52 Gateaux and Frechet ´ Derivative – Properties – Examples 1.9. Mappings in Banach Spaces ................................... 57 Linear Operators – Projectors – Implicit Functions 1.10. Convex Sets and Functions ....................................61 Convex Sets and Cones – Separation Theorems – Cone Properties – Convex Functions 1.11. Quadratic Functionals ......................................... 70 The Energy Functional – Operators in Hilbert Space – Projectors in Hilbert Space – Properties of the Energy Functional – Ritz Approximation Chapter 2. Numerical Methods ...............................79 2.1. Interpolation and Approximation ............................. 80 The General Interpolation Problem – Interpolating Polynomials – Interpolation after Lagrange – Interpolation after Newton – Interpolation of Derivatives – Approximation by Bezier´ Polynomials – Interpolating Splines 2.2. Orthogonal Polynomials ........................................90 Construction – The Formulas of Rodriguez – Minimum Property of Chebyshev Polynomials 2.3. Numerical Integration ..........................................94 Integration Rules of Lagrange – Composite Integration Rules – Gauß Integration – Suboptimal Integration Rules – Barycentric Coordinates in Triangle – Domain Integrals 2.4. Initial Value Problems ........................................ 105 Euler’s Method – General One-Step Methods – Asymptotic Expansion and Extrapolation – Runge-Kutta Methods – Multistep Methods – Stability – Stiff Differential Systems – Further Examples – Full Implicit Runge-Kutta Methods 2.5. Boundary Value Problems .................................... 128 The Linear Problem – Nonlinear Case – Boundary Value Problems with Parameter – Example 2.6. Periodic Problems ............................................. 133 Problems with Known Period – Problems with Unknown Period – Examples 2.7. Differential Algebraic Problems .............................. 136 Formulation of the Problem – Runge-Kutta Methods – Regular Matrix Pencils – Differential Index – Semi-Explicit Runge-Kutta Methods 2.8. Hints to the MATLAB Programs ............................ 141 Contents XI Chapter 3. Optimization .......................................143 3.1. Minimization of a Function ................................... 144 Descent Methods – Negative Examples – Convergence – Efficient Choice of Descent Direction – Newton’s Method 3.2. Extrema with Constraints .................................... 149 Formulation of the Problem – Multiplier Rule – Kuhn-Tucker Points – Example 3.3. Linear Programming ........................................... 154 Examples – Formulation of the Problem – Projection Method – Optimality Condition – Optimal Step Length – Change of Basis – Algorithm – Degenerated Extremal Points – Multiple Solutions – Equality Constraints – Sensitivity – The Dual Problem – The Tableau – Example 3.4. Linear-Quadratic Problems ................................... 164 Primal Projection Method – The Algorithm plqp.m – Dual Projection Method – The Algorithm dlqp.m – Examples for the Dual Method 3.5. Nonlinear Optimization ....................................... 169 Gradient Projection Method – Typical Iteration Step – Restoration – Penalty Methods – The Algorithm sqp.m – Supplements – Examples 3.6. A Brief on Lagrange Theory ..................................177 Formulation of the Problem – Lagrange Problem – Saddlepoint Problems – Primal and Dual Problems – Geometrical Interpretation – Lokal Lagrange Theory – Examples 3.7. Hints to the MATLAB Programs ............................ 191 Chapter 4. Variation and Control ...........................193 4.1. Variation ........................................................194 Extremal Problem, Variational Problem and Boundary Value Problem – Modified Problems – Variable Terminal Point – Legendre Transformation – Lagrange Function and Hamilton Function – Examples 4.2. Control Problems without Constraints ...................... 211 Formulation of the Problem – Free Terminal Time – The Free Lagrange Multipliers – The Costate – Maximum Principle – The State Regulator Problem 4.3. Control Problems with Constraints ..........................220 Formulation of the Problem – Necessary Conditions – On the Maximum Principle 4.4. Examples ....................................................... 226 Numerical Approach – Examples 4.5. On the Re-Entry Problem .................................... 236 4.6. Hints to the MATLAB Programs ............................ 240 XII Contents Chapter 5. The Road as Goal ................................ 241 5.1. Bifurcation Problems ..........................................242 Fredholm Operators – Formulation of the Problem – LjapunovSchmidt Reduction – The Branching Equation – Some Further Results – Examples – Symmetry – Examples with Symmetry 5.2. Scaling .......................................................... 257 Modified Ljapunov-Schmidt Reduction – Homogenous Problems – Nonlinear Eigenvalue Problem – Perturbated Eigenvalue Problem – General Branching Points 5.3. Calculation of Singular Points ................................264 Classification – Turning Points – Calculation of Simple Branching Points 5.4. Ordinary Differential Systems ................................ 268 Linear Boundary Value Problem – Adjoint Boundary Value Problem – Nonlinear Boundary Value Problems – Examples 5.5. Hopf Bifurcation ...............................................275 Formulation of the Problem – Simple Examples – Transformation to Uniform Period – An Eigenvalue Problem – Scaled Problem – Discretization – Numerical Solution – Examples 5.6. Numerical Bifurcation .........................................288 Two Algorithms – A Classic Example 5.7. Continuation ................................................... 295 Formulation of the Problem – Predictor Step – Corrector Step – Examples 5.8. Hints to the MATLAB Programs ............................ 300 Chapter 6. Mass Points and Rigid Bodies ................301 6.1. The Force and its Moment ....................................301 6.2. Dynamics of a Mass Point .................................... 303 Equations of Motion – Energy – Hamilton’s Principle – Systems with one Degree of Freedom – Rigid Rotation 6.3. Mass Point in Central Field .................................. 310 Equation of Motion – Total Energy – Shape of the Orbit – Kepler’s Problem – Examples 6.4. Systems of Mass Points ....................................... 319 Equations of Motion – Potential and Kinetic Energy – Mass Points with Constraints – D’Alembert’s Principle – Examples 6.5. The Three-Body Problem .....................................328 Formulation of Problem – Two-Body Problem – Restricted Three-Body Problem – Periodic Solutions 6.6. Rotating Frames ............................................... 334 Rotation of a Body – Two Rotations – Motion in Rotating System – Coriolis Force – Example Contents XIII 6.7. Inertia Tensor and Top ........................................339 Inertia Tensor – Rigid Body with Stationary Point – Rotors – Top without External Forces – Symmetric Top without External Forces – Leaded Symmetric Top – Kinematic Euler Equations – Heavy Symmetric 6.8. On Multibody Problems ...................................... 349 6.9. On Some Principles of Mechanics ............................353 Energy Principle – Extremal Principle – D’Alembert and Lagrange – Hamilton’s Principle – Jacobi’s Principle 6.10. Hints to the MATLAB Programs ........................... 357 Chapter 7. Rods and Beams ..................................359 7.1. Bending Beam ................................................. 359 Tension Rod – Bending Beam– Total Energy – Variational Problem and Boundary Value Problem – Balance of Moments – Further Boundary Conditions – Existence of Solution 7.2. Eigenvalue Problems .......................................... 367 Generalized Eigenvalue Problem – Buckling of a Beam – Oscillating Beam 7.3. Numerical Approximation .................................... 373 Tension Rod – Bending Beam – Examples 7.4. Frameworks of Rods ...........................................376 Tension Rod in General Position – Plane and Spacial Frameworks – Support Conditions – Support Loads – Examples 7.5. Frameworks of Beams ......................................... 382 Torsion – Total Energy – Beam with Bending and Torsion – Numerical Approximation 7.6. Hints to the MATLAB Programs ............................ 386 Chapter 8. Continuum Theory ...............................387 8.1. Deformations ...................................................387 Deformation – Derivation of the Gradient – Material Derivatives (Substantial Derivatives) – Piola Transformation – Pull Back of Divergence Theorem 8.2. The Three Transport Theorems .............................393 8.3. Conservation Laws .............................................396 Conservation Law of Mass, Momentum, Angular Momentum and Energy – Conservation Laws in Differential Form – Second Law of Thermodynamics 8.4. Material Forms .................................................403 Conservation Laws – Variational Problem – Extremal Problem – Hamilton’s Principle Top – Energy – Examples XIV Contents 8.5. Linear Elasticity Theory ...................................... 408 Strain- and Stress Tensor – Extremal Problem and Variational Problem – Boundary Value Problem – St.Venant-Kirchhoff Material – Elasticity and Compliance Matrix 8.6. Discs ............................................................ 413 Plane Stress – Plane Strain 8.7. Kirchhoff ’s Plate ...............................................415 Extremal Problem and Variational Problem – Transformation – Boundary Value Problem – Babuska Paradoxon – Example 8.8. Von Karman’s Plate and the Membrane .................... 421 Strain Energy – Airy’s Stress Function – Von Karman’s Equations 8.9. On Fluids and Gases .......................................... 424 Conservation Laws – Notations – Conservation Laws of Viscous Fluids – Homogenous Fluids 8.10. Navier-Stokes Equations ..................................... 427 Velocity-Pressure Form – Boundary Value Problem – Non-Dimensional System – Stream-Function Vorticity Form – Connection with the Plate Equation – Calculation of Pressure Chapter 9. Finite Elements ................................... 435 9.1. Elliptic Boundary Value Problems ........................... 435 Extremal Problem – Weak Form – Boundary Value Problem – Existence of Solutions 9.2. From Formula to Figure, Example ........................... 439 Formulation of the Problem – Approximation – Linear Triangular Elements – Implementation of Dirichlet Boundary Conditions – Implementation of Cauchy Boundary Conditions 9.3. Constructing Finite Elements ................................ 445 Formulation of the Problem – Integration by Shape Functions – Reduction to Unit Triangle – Examples 9.4. Further Topics ................................................. 452 Hermitian Elements – Normal Derivatives – Argyris’ Triangle – A Triangular Element with Curvilinear Edges – Finite Elements for Discs – On the Patch Test – A Cubic Triangular Element for Plates 9.5. On Singular Elements ......................................... 467 Transition to Polar Coordinates – Laplace Equation – Example 9.6. Navier-Stokes Equations ...................................... 471 Incompressible Stationary Equations – Convective Term – TaylorHood Element – Stream-Function Vorticity Form – Coupled Stationary System – Boundary Conditions for Stream-Function Vorticity Form Contents XV 9.7. Mixed Applications ............................................482 Heat Conduction – Convection – Mass Transport – Shallow Water Problems 9.8. Examples ....................................................... 489 Navier-Stokes Equations – Convection – Shallow Water Problems – Discs and Plates 9.9. Hints to the MATLAB Programs ............................ 498 Chapter 10. A Survey on Tensor Calculus ................503 10.1. Tensor Algebra ................................................ 503 Transformation of Basis and Components – Scalar Product Spaces – Identifying V and Vd – General Tensors – Representation and Transformation of Tensors – Tensor Product – Vector Space of Tensors – Representation of General Tensors – Transformation of General Tensors – Contraction – Scalar Product of Tensors – Raising and Lowering of Indices – Examples 10.2. Algebra of Alternating Tensors ..............................520 Alternating Tensors – Alternating Part of Tensors – Exterior Product of Tensors – Basis – Representation of Alternating Tensors – Basis Transformation – Scalar Product of Alternating Tensors 10.3. Differential Forms in Rn ...................................... 525 The Abstract Tangential Space and Pfaffian Forms – Differential Forms – Exterior Derivatives – Closed and Exact Forms – Hodge Star Operator and Integral Theorems – Transformations – Push Forward 10.4. Tensor Analysis ............................................... 537 Euklidian Manifolds – Natural Coordinate Systems – Representation and Transformation – Christoffel Symbols – Divergence of Gradient of a Scalar Field – Gradient of a Tensor – Divergence of a Tensor Field – Rotation of a Vector Field 10.5. Examples .......................................................550 Brief Recapitulation – Orthogonal Natural Coordinate Systems – Divergence and Rotation 10.6. Transformation Groups .......................................555 Notations and Definitions – Examples – One-Parametric Transformation Groups – Generator of a Group Chapter 11. Case Studies ......................................561 11.1. An Example of Gas Dynamics ............................... 561 11.2. The Reissner-Mindlin Plate ..................................563 11.3. Examples of Multibody Problems ...........................565 Double Pendulum – Seven-Body Problem (Andrew’s Squeezer) – Roboter after Schiehlen XVI Contents 11.4. Dancing Discs ................................................. 568 General Discs – Cogwheels – Gears with Zero-Gearing 11.5. Buckling of a Circular Plate ................................. 574 Chapter 12. Appendix ..........................................577 12.1. Notations and Tables ......................................... 577 Notations – Measure Units and Physical Constants – Shape Functions of Complete Cubic Triangular Element – Argyris’ Element 12.2. Matrix Zoo .................................................... 581 12.3. Translation and Rotation .....................................583 12.4. Trigonometric Interpolation ................................. 585 Fourier Series – Discrete Fourier Transformation – Trigonometric Interpolation 12.5. Further Properties of Vector Spaces ........................ 591 Sets of Measure Zero – Functions of Bounded Variation – The Dual Space of C[a, b] – Examples 12.6. Cycloids ........................................................593 12.7. Quaternions and Rotations ...................................596 Complex Numbers – Quaternions – Composed Rotations References ........................................................... 599 Index ................................................................. 611
标签: 方法
小贴士
感谢您为本站写下的评论,您的评论对其它用户来说具有重要的参考价值,所以请认真填写。
- 类似“顶”、“沙发”之类没有营养的文字,对勤劳贡献的楼主来说是令人沮丧的反馈信息。
- 相信您也不想看到一排文字/表情墙,所以请不要反馈意义不大的重复字符,也请尽量不要纯表情的回复。
- 提问之前请再仔细看一遍楼主的说明,或许是您遗漏了。
- 请勿到处挖坑绊人、招贴广告。既占空间让人厌烦,又没人会搭理,于人于己都无利。
关于好例子网
本站旨在为广大IT学习爱好者提供一个非营利性互相学习交流分享平台。本站所有资源都可以被免费获取学习研究。本站资源来自网友分享,对搜索内容的合法性不具有预见性、识别性、控制性,仅供学习研究,请务必在下载后24小时内给予删除,不得用于其他任何用途,否则后果自负。基于互联网的特殊性,平台无法对用户传输的作品、信息、内容的权属或合法性、安全性、合规性、真实性、科学性、完整权、有效性等进行实质审查;无论平台是否已进行审查,用户均应自行承担因其传输的作品、信息、内容而可能或已经产生的侵权或权属纠纷等法律责任。本站所有资源不代表本站的观点或立场,基于网友分享,根据中国法律《信息网络传播权保护条例》第二十二与二十三条之规定,若资源存在侵权或相关问题请联系本站客服人员,点此联系我们。关于更多版权及免责申明参见 版权及免责申明
网友评论
我要评论