实例介绍
【实例简介】
【实例截图】
【核心代码】
Table of Contents Using This Manual .................................................................................................................................... xxix 1.The Contents of This Manual ............................................................................................................ xxix 2.The Contents of the Fluent Manuals .................................................................................................. xxx 3. Typographical Conventions ............................................................................................................. xxxi 4. Mathematical Conventions ............................................................................................................ xxxiv 5.Technical Support ........................................................................................................................... xxxv 1. Basic Fluid Flow ....................................................................................................................................... 1 1.1. Overview of Physical Models in ANSYS Fluent .................................................................................... 1 1.2. Continuity and Momentum Equations ............................................................................................... 2 1.2.1. The Mass Conservation Equation .............................................................................................. 2 1.2.2. Momentum Conservation Equations ........................................................................................ 3 1.3. User-Defined Scalar (UDS) Transport Equations .................................................................................. 4 1.3.1. Single Phase Flow .................................................................................................................... 4 1.3.2. Multiphase Flow ....................................................................................................................... 5 1.4. Periodic Flows .................................................................................................................................. 6 1.4.1. Overview ................................................................................................................................. 6 1.4.2. Limitations ............................................................................................................................... 7 1.4.3. Physics of Periodic Flows .......................................................................................................... 7 1.4.3.1. Definition of the Periodic Velocity .................................................................................... 7 1.4.3.2. Definition of the Streamwise-Periodic Pressure ................................................................ 8 1.5. Swirling and Rotating Flows .............................................................................................................. 8 1.5.1. Overview of Swirling and Rotating Flows .................................................................................. 9 1.5.1.1. Axisymmetric Flows with Swirl or Rotation ....................................................................... 9 1.5.1.1.1. Momentum Conservation Equation for Swirl Velocity ............................................. 10 1.5.1.2.Three-Dimensional Swirling Flows .................................................................................. 10 1.5.1.3. Flows Requiring a Moving Reference Frame ................................................................... 11 1.5.2. Physics of Swirling and Rotating Flows .................................................................................... 11 1.6. Compressible Flows ........................................................................................................................ 12 1.6.1.When to Use the Compressible Flow Model ............................................................................ 13 1.6.2. Physics of Compressible Flows ................................................................................................ 13 1.6.2.1. Basic Equations for Compressible Flows ......................................................................... 14 1.6.2.2.The Compressible Form of the Gas Law .......................................................................... 14 1.7. Inviscid Flows ................................................................................................................................. 15 1.7.1. Euler Equations ...................................................................................................................... 15 1.7.1.1.The Mass Conservation Equation .................................................................................... 15 1.7.1.2. Momentum Conservation Equations .............................................................................. 16 1.7.1.3. Energy Conservation Equation ....................................................................................... 16 2. Flows with Moving Reference Frames ................................................................................................... 17 2.1. Introduction ................................................................................................................................... 17 2.2. Flow in a Moving Reference Frame .................................................................................................. 18 2.2.1. Equations for a Moving Reference Frame ................................................................................ 19 2.2.1.1. Relative Velocity Formulation ......................................................................................... 20 2.2.1.2. Absolute Velocity Formulation ....................................................................................... 21 2.2.1.3. Relative Specification of the Reference Frame Motion ..................................................... 21 2.3. Flow in Multiple Reference Frames .................................................................................................. 22 2.3.1.The Multiple Reference Frame Model ...................................................................................... 22 2.3.1.1. Overview ....................................................................................................................... 22 2.3.1.2. Examples ....................................................................................................................... 23 2.3.1.3. The MRF Interface Formulation ...................................................................................... 24 2.3.1.3.1. Interface Treatment: Relative Velocity Formulation ................................................. 24 iii Release 16.0 - © SAS IP, Inc. All rights reserved. - Contains proprietary and confidential information of ANSYS, Inc. and its subsidiaries and affiliates. 2.3.1.3.2. Interface Treatment: Absolute Velocity Formulation ............................................... 25 2.3.2. The Mixing Plane Model ......................................................................................................... 25 2.3.2.1. Overview ....................................................................................................................... 26 2.3.2.2. Rotor and Stator Domains .............................................................................................. 26 2.3.2.3. The Mixing Plane Concept ............................................................................................. 27 2.3.2.4. Choosing an Averaging Method ..................................................................................... 28 2.3.2.4.1. Area Averaging ..................................................................................................... 28 2.3.2.4.2. Mass Averaging .................................................................................................... 28 2.3.2.4.3. Mixed-Out Averaging ............................................................................................ 29 2.3.2.5. Mixing Plane Algorithm of ANSYS Fluent ........................................................................ 29 2.3.2.6. Mass Conservation ........................................................................................................ 30 2.3.2.7. Swirl Conservation ......................................................................................................... 30 2.3.2.8. Total Enthalpy Conservation .......................................................................................... 31 3. Flows Using Sliding and Dynamic Meshes ............................................................................................ 33 3.1. Introduction ................................................................................................................................... 33 3.2. Dynamic Mesh Theory .................................................................................................................... 34 3.2.1. Conservation Equations ......................................................................................................... 35 3.2.2. Six DOF (6DOF) Solver Theory ................................................................................................. 36 3.3. Sliding Mesh Theory ....................................................................................................................... 37 4.Turbulence ............................................................................................................................................. 39 4.1. Underlying Principles of Turbulence Modeling ................................................................................. 39 4.1.1. Reynolds (Ensemble) Averaging .............................................................................................. 39 4.1.2. Filtered Navier-Stokes Equations ............................................................................................. 40 4.1.3. Hybrid RANS-LES Formulations ............................................................................................... 41 4.1.4. Boussinesq Approach vs. Reynolds Stress Transport Models ..................................................... 41 4.2. Spalart-Allmaras Model ................................................................................................................... 42 4.2.1. Overview ............................................................................................................................... 42 4.2.2. Transport Equation for the Spalart-Allmaras Model ................................................................. 43 4.2.3. Modeling the Turbulent Viscosity ............................................................................................ 43 4.2.4. Modeling the Turbulent Production ........................................................................................ 43 4.2.5. Modeling the Turbulent Destruction ....................................................................................... 44 4.2.6. Model Constants .................................................................................................................... 45 4.2.7. Wall Boundary Conditions ...................................................................................................... 45 4.2.8. Convective Heat and Mass Transfer Modeling .......................................................................... 45 4.3. Standard, RNG, and Realizable k-ε Models ........................................................................................ 45 4.3.1. Standard k-ε Model ................................................................................................................ 46 4.3.1.1. Overview ....................................................................................................................... 46 4.3.1.2.Transport Equations for the Standard k-ε Model ............................................................. 46 4.3.1.3. Modeling the Turbulent Viscosity ................................................................................... 47 4.3.1.4. Model Constants ........................................................................................................... 47 4.3.2. RNG k-ε Model ....................................................................................................................... 47 4.3.2.1. Overview ....................................................................................................................... 47 4.3.2.2.Transport Equations for the RNG k-ε Model ..................................................................... 48 4.3.2.3. Modeling the Effective Viscosity ..................................................................................... 48 4.3.2.4. RNG Swirl Modification .................................................................................................. 49 4.3.2.5. Calculating the Inverse Effective Prandtl Numbers .......................................................... 49 4.3.2.6.The R-ε Term in the ε Equation ........................................................................................ 49 4.3.2.7. Model Constants ........................................................................................................... 50 4.3.3. Realizable k-ε Model ............................................................................................................... 50 4.3.3.1. Overview ....................................................................................................................... 50 4.3.3.2.Transport Equations for the Realizable k-ε Model ............................................................ 51 4.3.3.3. Modeling the Turbulent Viscosity ................................................................................... 52 Release 16.0 - © SAS IP, Inc. All rights reserved. - Contains proprietary and confidential information iv of ANSYS, Inc. and its subsidiaries and affiliates. Theory Guide 4.3.3.4. Model Constants ........................................................................................................... 53 4.3.4. Modeling Turbulent Production in the k-ε Models ................................................................... 53 4.3.5. Effects of Buoyancy on Turbulence in the k-ε Models ............................................................... 53 4.3.6. Effects of Compressibility on Turbulence in the k-ε Models ...................................................... 54 4.3.7. Convective Heat and Mass Transfer Modeling in the k-ε Models ............................................... 55 4.4. Standard, BSL, and SST k-ω Models ................................................................................................... 56 4.4.1. Standard k-ω Model ............................................................................................................... 57 4.4.1.1. Overview ....................................................................................................................... 57 4.4.1.2.Transport Equations for the Standard k-ω Model ............................................................. 57 4.4.1.3. Modeling the Effective Diffusivity ................................................................................... 57 4.4.1.3.1. Low-Reynolds Number Correction ......................................................................... 57 4.4.1.4. Modeling the Turbulence Production ............................................................................. 58 4.4.1.4.1. Production of k ..................................................................................................... 58 4.4.1.4.2. Production of ω ..................................................................................................... 58 4.4.1.5. Modeling the Turbulence Dissipation ............................................................................. 58 4.4.1.5.1. Dissipation of k ..................................................................................................... 58 4.4.1.5.2. Dissipation of ω ..................................................................................................... 59 4.4.1.5.3. Compressibility Effects .......................................................................................... 59 4.4.1.6. Model Constants ........................................................................................................... 60 4.4.2. Baseline (BSL) k-ω Model ........................................................................................................ 60 4.4.2.1. Overview ....................................................................................................................... 60 4.4.2.2.Transport Equations for the BSL k-ω Model ..................................................................... 60 4.4.2.3. Modeling the Effective Diffusivity ................................................................................... 61 4.4.2.4. Modeling the Turbulence Production ............................................................................. 61 4.4.2.4.1. Production of k ..................................................................................................... 61 4.4.2.4.2. Production of ω ..................................................................................................... 61 4.4.2.5. Modeling the Turbulence Dissipation ............................................................................. 62 4.4.2.5.1. Dissipation of k ..................................................................................................... 62 4.4.2.5.2. Dissipation of ω ..................................................................................................... 62 4.4.2.6. Cross-Diffusion Modification .......................................................................................... 62 4.4.2.7. Model Constants ........................................................................................................... 62 4.4.3. Shear-Stress Transport (SST) k-ω Model ................................................................................... 63 4.4.3.1. Overview ....................................................................................................................... 63 4.4.3.2. Modeling the Turbulent Viscosity ................................................................................... 63 4.4.3.3. Model Constants ........................................................................................................... 63 4.4.4.Turbulence Damping .............................................................................................................. 64 4.4.5. Wall Boundary Conditions ...................................................................................................... 64 4.5. k-kl-ω Transition Model ................................................................................................................... 65 4.5.1. Overview ............................................................................................................................... 65 4.5.2.Transport Equations for the k-kl-ω Model ................................................................................ 65 4.5.2.1. Model Constants ........................................................................................................... 68 4.6.Transition SST Model ....................................................................................................................... 68 4.6.1. Overview ............................................................................................................................... 69 4.6.2.Transport Equations for the Transition SST Model .................................................................... 69 4.6.2.1. Separation-Induced Transition Correction ...................................................................... 71 4.6.2.2. Coupling the Transition Model and SST Transport Equations ........................................... 71 4.6.2.3.Transition SST and Rough Walls ...................................................................................... 72 4.6.3. Mesh Requirements ............................................................................................................... 72 4.6.4. Specifying Inlet Turbulence Levels .......................................................................................... 75 4.7. Intermittency Transition Model ....................................................................................................... 76 4.7.1. Overview ............................................................................................................................... 76 4.7.2.Transport Equations for the Intermittency Transition Model ..................................................... 77 v Release 16.0 - © SAS IP, Inc. All rights reserved. - Contains proprietary and confidential information of ANSYS, Inc. and its subsidiaries and affiliates. Theory Guide 4.7.3. Coupling with the Other Models ............................................................................................. 79 4.7.4. Intermittency Transition Model and Rough Walls ..................................................................... 79 4.8.The V2F Model ................................................................................................................................ 79 4.9. Reynolds Stress Model (RSM) ........................................................................................................... 79 4.9.1. Overview ............................................................................................................................... 80 4.9.2. Reynolds Stress Transport Equations ....................................................................................... 80 4.9.3. Modeling Turbulent Diffusive Transport .................................................................................. 81 4.9.4. Modeling the Pressure-Strain Term ......................................................................................... 82 4.9.4.1. Linear Pressure-Strain Model .......................................................................................... 82 4.9.4.2. Low-Re Modifications to the Linear Pressure-Strain Model .............................................. 82 4.9.4.3. Quadratic Pressure-Strain Model .................................................................................... 83 4.9.4.4. Low-Re Stress-Omega Model ......................................................................................... 84 4.9.5. Effects of Buoyancy on Turbulence ......................................................................................... 85 4.9.6. Modeling the Turbulence Kinetic Energy ................................................................................. 85 4.9.7. Modeling the Dissipation Rate ................................................................................................ 86 4.9.8. Modeling the Turbulent Viscosity ............................................................................................ 86 4.9.9. Wall Boundary Conditions ...................................................................................................... 87 4.9.10. Convective Heat and Mass Transfer Modeling ........................................................................ 87 4.10. Scale-Adaptive Simulation (SAS) Model ......................................................................................... 88 4.10.1. Overview ............................................................................................................................. 88 4.10.2.Transport Equations for the SST-SAS Model ........................................................................... 89 4.10.3. SAS with Other ω-Based Turbulence Models .......................................................................... 90 4.11. Detached Eddy Simulation (DES) ................................................................................................... 90 4.11.1. Overview ............................................................................................................................. 91 4.11.2. DES with the Spalart-Allmaras Model .................................................................................... 91 4.11.3. DES with the Realizable k-ε Model ......................................................................................... 92 4.11.4. DES with the BSL or SST k-ω Model ....................................................................................... 93 4.11.5. DES with the Transition SST Model ........................................................................................ 93 4.11.6. Improved Delayed Detached Eddy Simulation (IDDES) .......................................................... 93 4.11.6.1. Overview of IDDES ....................................................................................................... 93 4.11.6.2. IDDES Model Formulation ............................................................................................ 94 4.12. Large Eddy Simulation (LES) Model ................................................................................................ 94 4.12.1. Overview ............................................................................................................................. 95 4.12.2. Subgrid-Scale Models ........................................................................................................... 95 4.12.2.1. Smagorinsky-Lilly Model .............................................................................................. 97 4.12.2.2. Dynamic Smagorinsky-Lilly Model ............................................................................... 97 4.12.2.3.Wall-Adapting Local Eddy-Viscosity (WALE) Model ........................................................ 98 4.12.2.4. Algebraic Wall-Modeled LES Model (WMLES) ................................................................ 98 4.12.2.4.1. Algebraic WMLES Model Formulation .................................................................. 99 4.12.2.4.1.1. Reynolds Number Scaling ......................................................................... 100 4.12.2.4.2. Algebraic WMLES S-Omega Model Formulation ................................................. 101 4.12.2.5. Dynamic Kinetic Energy Subgrid-Scale Model ............................................................. 101 4.12.3. Inlet Boundary Conditions for the LES Model ....................................................................... 102 4.12.3.1.Vortex Method ........................................................................................................... 102 4.12.3.2. Spectral Synthesizer ................................................................................................... 103 4.13. Embedded Large Eddy Simulation (ELES) ..................................................................................... 104 4.13.1. Overview ........................................................................................................................... 104 4.13.2. Selecting a Model ............................................................................................................... 105 4.13.3. Interfaces Treatment ........................................................................................................... 105 4.13.3.1. RANS-LES Interface .................................................................................................... 105 4.13.3.2. LES-RANS Interface .................................................................................................... 106 4.13.3.3. Internal Interface Without LES Zone ........................................................................... 106 Release 16.0 - © SAS IP, Inc. All rights reserved. - Contains proprietary and confidential information vi of ANSYS, Inc. and its subsidiaries and affiliates. Theory Guide 4.13.3.4. Grid Generation Guidelines ........................................................................................ 107 4.14. Near-Wall Treatments for Wall-Bounded Turbulent Flows .............................................................. 107 4.14.1. Overview ........................................................................................................................... 107 4.14.1.1.Wall Functions vs. Near-Wall Model ............................................................................. 108 4.14.1.2. Wall Functions ........................................................................................................... 110 4.14.2. Standard Wall Functions ..................................................................................................... 110 4.14.2.1. Momentum ............................................................................................................... 110 4.14.2.2. Energy ....................................................................................................................... 111 4.14.2.3. Species ...................................................................................................................... 113 4.14.2.4. Turbulence ................................................................................................................ 113 4.14.3. Scalable Wall Functions ....................................................................................................... 114 4.14.4. Non-Equilibrium Wall Functions .......................................................................................... 114 4.14.4.1. Standard Wall Functions vs. Non-Equilibrium Wall Functions ....................................... 116 4.14.4.2. Limitations of the Wall Function Approach ................................................................. 116 4.14.5. Enhanced Wall Treatment ε-Equation (EWT-ε) ...................................................................... 116 4.14.5.1.Two-Layer Model for Enhanced Wall Treatment ........................................................... 117 4.14.5.2. Enhanced Wall Treatment for Momentum and Energy Equations ................................. 118 4.14.6. Menter-Lechner ε-Equation (ML-ε) ...................................................................................... 120 4.14.6.1. Momentum Equations ............................................................................................... 122 4.14.6.2. k-ε Turbulence Models ............................................................................................... 122 4.14.6.3. Iteration Improvements ............................................................................................. 122 4.14.7. y -Insensitive Wall Treatment ω-Equation ........................................................................... 122 4.14.8. User-Defined Wall Functions ............................................................................................... 123 4.14.9. LES Near-Wall Treatment ..................................................................................................... 123 4.15. Curvature Correction for the Spalart-Allmaras and Two-Equation Models ..................................... 123 4.16. Production Limiters for Two-Equation Models .............................................................................. 125 4.17. Definition of Turbulence Scales .................................................................................................... 127 4.17.1. RANS and Hybrid (SAS and DES) Turbulence Models ............................................................ 127 4.17.2. Large Eddy Simulation (LES) Models .................................................................................... 127 5. Heat Transfer ....................................................................................................................................... 129 5.1. Introduction ................................................................................................................................. 129 5.2. Modeling Conductive and Convective Heat Transfer ...................................................................... 129 5.2.1. Heat Transfer Theory ............................................................................................................. 129 5.2.1.1.The Energy Equation .................................................................................................... 129 5.2.1.2.The Energy Equation in Moving Reference Frames ........................................................ 130 5.2.1.3.The Energy Equation for the Non-Premixed Combustion Model .................................... 130 5.2.1.4. Inclusion of Pressure Work and Kinetic Energy Terms .................................................... 131 5.2.1.5. Inclusion of the Viscous Dissipation Terms .................................................................... 131 5.2.1.6. Inclusion of the Species Diffusion Term ........................................................................ 131 5.2.1.7. Energy Sources Due to Reaction ................................................................................... 132 5.2.1.8. Energy Sources Due To Radiation ................................................................................. 132 5.2.1.9. Interphase Energy Sources ........................................................................................... 132 5.2.1.10. Energy Equation in Solid Regions ............................................................................... 132 5.2.1.11. Anisotropic Conductivity in Solids .............................................................................. 133 5.2.1.12. Diffusion at Inlets ....................................................................................................... 133 5.2.2. Natural Convection and Buoyancy-Driven Flows Theory ........................................................ 133 5.3. Modeling Radiation ...................................................................................................................... 134 5.3.1. Overview and Limitations ..................................................................................................... 134 5.3.1.1. Advantages and Limitations of the DTRM ..................................................................... 135 5.3.1.2. Advantages and Limitations of the P-1 Model ............................................................... 135 5.3.1.3. Advantages and Limitations of the Rosseland Model .................................................... 136 5.3.1.4. Advantages and Limitations of the DO Model ............................................................... 136 vii Release 16.0 - © SAS IP, Inc. All rights reserved. - Contains proprietary and confidential information of ANSYS, Inc. and its subsidiaries and affiliates. Theory Guide 5.3.1.5. Advantages and Limitations of the S2S Model .............................................................. 136 5.3.2. Radiative Transfer Equation .................................................................................................. 137 5.3.3. P-1 Radiation Model Theory .................................................................................................. 138 5.3.3.1. The P-1 Model Equations ............................................................................................. 138 5.3.3.2. Anisotropic Scattering ................................................................................................. 140 5.3.3.3. Particulate Effects in the P-1 Model .............................................................................. 140 5.3.3.4. Boundary Condition Treatment for the P-1 Model at Walls ............................................. 141 5.3.3.5. Boundary Condition Treatment for the P-1 Model at Flow Inlets and Exits ...................... 142 5.3.4. Rosseland Radiation Model Theory ....................................................................................... 142 5.3.4.1.The Rosseland Model Equations ................................................................................... 142 5.3.4.2. Anisotropic Scattering ................................................................................................. 143 5.3.4.3. Boundary Condition Treatment at Walls ........................................................................ 143 5.3.4.4. Boundary Condition Treatment at Flow Inlets and Exits ................................................. 143 5.3.5. Discrete Transfer Radiation Model (DTRM) Theory ................................................................. 143 5.3.5.1.The DTRM Equations .................................................................................................... 143 5.3.5.2. Ray Tracing .................................................................................................................. 144 5.3.5.3. Clustering .................................................................................................................... 144 5.3.5.4. Boundary Condition Treatment for the DTRM at Walls ................................................... 145 5.3.5.5. Boundary Condition Treatment for the DTRM at Flow Inlets and Exits ............................ 145 5.3.6. Discrete Ordinates (DO) Radiation Model Theory ................................................................... 146 5.3.6.1. The DO Model Equations ............................................................................................. 146 5.3.6.2. Energy Coupling and the DO Model ............................................................................. 147 5.3.6.2.1. Limitations of DO/Energy Coupling ..................................................................... 148 5.3.6.3. Angular Discretization and Pixelation ........................................................................... 148 5.3.6.4. Anisotropic Scattering ................................................................................................. 151 5.3.6.5. Particulate Effects in the DO Model .............................................................................. 152 5.3.6.6. Boundary and Cell Zone Condition Treatment at Opaque Walls ..................................... 152 5.3.6.6.1. Gray Diffuse Walls ............................................................................................... 154 5.3.6.6.2. Non-Gray Diffuse Walls ........................................................................................ 154 5.3.6.7. Cell Zone and Boundary Condition Treatment at Semi-Transparent Walls ...................... 154 5.3.6.7.1. Semi-Transparent Interior Walls ........................................................................... 155 5.3.6.7.2. Specular Semi-Transparent Walls ......................................................................... 156 5.3.6.7.3. Diffuse Semi-Transparent Walls ............................................................................ 158 5.3.6.7.4. Partially Diffuse Semi-Transparent Walls ............................................................... 159 5.3.6.7.5. Semi-Transparent Exterior Walls ........................................................................... 159 5.3.6.7.6. Limitations .......................................................................................................... 161 5.3.6.7.7. Solid Semi-Transparent Media ............................................................................. 162 5.3.6.8. Boundary Condition Treatment at Specular Walls and Symmetry Boundaries ................. 162 5.3.6.9. Boundary Condition Treatment at Periodic Boundaries ................................................. 162 5.3.6.10. Boundary Condition Treatment at Flow Inlets and Exits ............................................... 162 5.3.7. Surface-to-Surface (S2S) Radiation Model Theory .................................................................. 162 5.3.7.1. Gray-Diffuse Radiation ................................................................................................. 162 5.3.7.2.The S2S Model Equations ............................................................................................. 163 5.3.7.3. Clustering .................................................................................................................... 164 5.3.7.3.1. Clustering and View Factors ................................................................................ 164 5.3.7.3.2. Clustering and Radiosity ...................................................................................... 164 5.3.8. Radiation in Combusting Flows ............................................................................................ 165 5.3.8.1. The Weighted-Sum-of-Gray-Gases Model ..................................................................... 165 5.3.8.1.1.When the Total (Static) Gas Pressure is Not Equal to 1 atm .................................... 166 5.3.8.2.The Effect of Soot on the Absorption Coefficient ........................................................... 166 5.3.8.3.The Effect of Particles on the Absorption Coefficient ..................................................... 167 5.3.9. Choosing a Radiation Model ................................................................................................. 167 Release 16.0 - © SAS IP, Inc. All rights reserved. - Contains proprietary and confidential information viii of ANSYS, Inc. and its subsidiaries and affiliates. Theory Guide 5.3.9.1. External Radiation ....................................................................................................... 168 6. Heat Exchangers .................................................................................................................................. 169 6.1.The Macro Heat Exchanger Models ................................................................................................ 169 6.1.1. Overview of the Macro Heat Exchanger Models .................................................................... 169 6.1.2. Restrictions of the Macro Heat Exchanger Models ................................................................. 171 6.1.3. Macro Heat Exchanger Model Theory .................................................................................... 172 6.1.3.1. Streamwise Pressure Drop ........................................................................................... 173 6.1.3.2. Heat Transfer Effectiveness ........................................................................................... 174 6.1.3.3. Heat Rejection ............................................................................................................. 175 6.1.3.4. Macro Heat Exchanger Group Connectivity .................................................................. 176 6.2. The Dual Cell Model ...................................................................................................................... 177 6.2.1. Overview of the Dual Cell Model ........................................................................................... 177 6.2.2. Restrictions of the Dual Cell Model ........................................................................................ 178 6.2.3. Dual Cell Model Theory ......................................................................................................... 178 6.2.3.1. NTU Relations .............................................................................................................. 179 6.2.3.2. Heat Rejection ............................................................................................................. 179 7. Species Transport and Finite-Rate Chemistry ..................................................................................... 181 7.1. Volumetric Reactions .................................................................................................................... 181 7.1.1. Species Transport Equations ................................................................................................. 181 7.1.1.1. Mass Diffusion in Laminar Flows ................................................................................... 182 7.1.1.2. Mass Diffusion in Turbulent Flows ................................................................................ 182 7.1.1.3.Treatment of Species Transport in the Energy Equation ................................................. 182 7.1.1.4. Diffusion at Inlets ......................................................................................................... 182 7.1.2.The Generalized Finite-Rate Formulation for Reaction Modeling ............................................ 183 7.1.2.1.The Laminar Finite-Rate Model ..................................................................................... 183 7.1.2.2. Pressure-Dependent Reactions .................................................................................... 186 7.1.2.3.The Eddy-Dissipation Model ......................................................................................... 187 7.1.2.4. The Eddy-Dissipation Model for LES ............................................................................. 188 7.1.2.5. The Eddy-Dissipation-Concept (EDC) Model ................................................................. 188 7.1.2.6.The Thickened Flame Model ......................................................................................... 189 7.1.2.7.The Relaxation to Chemical Equilibrium Model ............................................................. 191 7.2.Wall Surface Reactions and Chemical Vapor Deposition .................................................................. 192 7.2.1. Surface Coverage Reaction Rate Modification ....................................................................... 194 7.2.2. Reaction-Diffusion Balance for Surface Chemistry ................................................................. 194 7.2.3. Slip Boundary Formulation for Low-Pressure Gas Systems ..................................................... 195 7.3. Particle Surface Reactions ............................................................................................................. 197 7.3.1. General Description .............................................................................................................. 197 7.3.2. ANSYS Fluent Model Formulation ......................................................................................... 198 7.3.3. Extension for Stoichiometries with Multiple Gas Phase Reactants .......................................... 199 7.3.4. Solid-Solid Reactions ............................................................................................................ 200 7.3.5. Solid Decomposition Reactions ............................................................................................ 200 7.3.6. Solid Deposition Reactions ................................................................................................... 200 7.3.7. Gaseous Solid Catalyzed Reactions on the Particle Surface .................................................... 200 7.4. Reacting Channel Model ............................................................................................................... 201 7.4.1. Overview and Limitations ..................................................................................................... 201 7.4.2. Reacting Channel Model Theory ........................................................................................... 201 7.4.2.1. Flow Inside the Reacting Channel ................................................................................. 202 7.4.2.2. Surface Reactions in the Reacting Channel ................................................................... 203 7.4.2.3. Porous Medium Inside Reacting Channel ...................................................................... 204 7.4.2.4. Outer Flow in the Shell ................................................................................................. 204 7.5. Reactor Network Model ................................................................................................................ 205 7.5.1. Reactor Network Model Theory ............................................................................................ 205 ix Release 16.0 - © SAS IP, Inc. All rights reserved. - Contains proprietary and confidential information of ANSYS, Inc. and its subsidiaries and affiliates. Theory Guide 7.5.1.1. Reactor network temperature solution ......................................................................... 206 8. Non-Premixed Combustion ................................................................................................................. 207 8.1. Introduction ................................................................................................................................. 207 8.2. Non-Premixed Combustion and Mixture Fraction Theory ............................................................... 207 8.2.1. Mixture Fraction Theory ....................................................................................................... 208 8.2.1.1. Definition of the Mixture Fraction ................................................................................ 208 8.2.1.2.Transport Equations for the Mixture Fraction ................................................................ 210 8.2.1.3. The Non-Premixed Model for LES ................................................................................. 211 8.2.1.4. Mixture Fraction vs. Equivalence Ratio .......................................................................... 211 8.2.1.5. Relationship of Mixture Fraction to Species Mass Fraction, Density, and Temperature ..... 212 8.2.2. Modeling of Turbulence-Chemistry Interaction ..................................................................... 213 8.2.2.1. Description of the Probability Density Function ............................................................ 213 8.2.2.2. Derivation of Mean Scalar Values from the Instantaneous Mixture Fraction ................... 213 8.2.2.3. The Assumed-Shape PDF ............................................................................................. 214 8.2.2.3.1.The Double Delta Function PDF ........................................................................... 214 8.2.2.3.2.The β-Function PDF ............................................................................................. 215 8.2.3. Non-Adiabatic Extensions of the Non-Premixed Model .......................................................... 216 8.2.4. Chemistry Tabulation ........................................................................................................... 218 8.2.4.1. Look-Up Tables for Adiabatic Systems ........................................................................... 218 8.2.4.2. 3D Look-Up Tables for Non-Adiabatic Systems .............................................................. 220 8.2.4.3. Generating Lookup Tables Through Automated Grid Refinement .................................. 222 8.3. Restrictions and Special Cases for Using the Non-Premixed Model ................................................. 224 8.3.1. Restrictions on the Mixture Fraction Approach ...................................................................... 224 8.3.2. Using the Non-Premixed Model for Liquid Fuel or Coal Combustion ...................................... 227 8.3.3. Using the Non-Premixed Model with Flue Gas Recycle .......................................................... 228 8.3.4. Using the Non-Premixed Model with the Inert Model ............................................................ 228 8.3.4.1. Mixture Composition ................................................................................................... 229 8.3.4.1.1. Property Evaluation ............................................................................................. 230 8.4.The Diffusion Flamelet Models Theory ........................................................................................... 230 8.4.1. Restrictions and Assumptions ............................................................................................... 230 8.4.2.The Flamelet Concept ........................................................................................................... 230 8.4.2.1. Overview ..................................................................................................................... 230 8.4.2.2. Strain Rate and Scalar Dissipation ................................................................................. 232 8.4.2.3. Embedding Diffusion Flamelets in Turbulent Flames ..................................................... 232 8.4.3. Flamelet Generation ............................................................................................................. 233 8.4.4. Flamelet Import ................................................................................................................... 234 8.5. The Steady Diffusion Flamelet Model Theory ................................................................................. 236 8.5.1. Overview ............................................................................................................................. 236 8.5.2. Multiple Steady Flamelet Libraries ........................................................................................ 237 8.5.3. Steady Diffusion Flamelet Automated Grid Refinement ......................................................... 237 8.5.4. Non-Adiabatic Steady Diffusion Flamelets ............................................................................. 237 8.6. The Unsteady Diffusion Flamelet Model Theory ............................................................................. 238 8.6.1. The Eulerian Unsteady Laminar Flamelet Model .................................................................... 239 8.6.1.1. Liquid Reactions .......................................................................................................... 241 8.6.2. The Diesel Unsteady Laminar Flamelet Model ....................................................................... 241 8.6.3. Multiple Diesel Unsteady Flamelets ....................................................................................... 242 8.6.4. Multiple Diesel Unsteady Flamelets with Flamelet Reset ........................................................ 243 8.6.4.1. Resetting the Flamelets ................................................................................................ 243 9. Premixed Combustion ......................................................................................................................... 245 9.1. Overview and Limitations ............................................................................................................. 245 9.1.1. Overview ............................................................................................................................. 245 9.1.2. Limitations ........................................................................................................................... 246 Release 16.0 - © SAS IP, Inc. All rights reserved. - Contains proprietary and confidential information x of ANSYS, Inc. and its subsidiaries and affiliates. Theory Guide 9.2. C-Equation Model Theory .............................................................................................................. 246 9.2.1. Propagation of the Flame Front ............................................................................................ 246 9.3. G-Equation Model Theory ............................................................................................................. 247 9.3.1. Numerical Solution of the G-equation ................................................................................... 248 9.4. Turbulent Flame Speed Models ..................................................................................................... 249 9.4.1. Zimont Turbulent Flame Speed Closure Model ...................................................................... 249 9.4.1.1. Zimont Turbulent Flame Speed Closure for LES ............................................................. 250 9.4.1.2. Flame Stretch Effect ..................................................................................................... 251 9.4.1.3. Gradient Diffusion ....................................................................................................... 251 9.4.1.4.Wall Damping .............................................................................................................. 252 9.4.2. Peters Flame Speed Model .................................................................................................... 252 9.4.2.1. Peters Flame Speed Model for LES ................................................................................ 253 9.5. Extended Coherent Flamelet Model Theory ................................................................................... 254 9.5.1. Closure for ECFM Source Terms ............................................................................................. 255 9.5.2.Turbulent Flame Speed in ECFM ............................................................................................ 258 9.5.3. LES and ECFM ...................................................................................................................... 258 9.6. Calculation of Properties ............................................................................................................... 260 9.6.1. Calculation of Temperature ................................................................................................... 260 9.6.1.1. Adiabatic Temperature Calculation ............................................................................... 260 9.6.1.2. Non-Adiabatic Temperature Calculation ....................................................................... 260 9.6.2. Calculation of Density .......................................................................................................... 261 9.6.3. Laminar Flame Speed ........................................................................................................... 261 9.6.4. Unburnt Density and Thermal Diffusivity ............................................................................... 262 10. Partially Premixed Combustion ........................................................................................................ 263 10.1. Overview .................................................................................................................................... 263 10.2. Limitations .................................................................................................................................. 263 10.3. Partially Premixed Combustion Theory ........................................................................................ 264 10.3.1. Chemical Equilibrium and Steady Diffusion Flamelet Models ............................................... 264 10.3.2. Flamelet Generated Manifold (FGM) model ......................................................................... 265 10.3.2.1. Premixed FGMs .......................................................................................................... 265 10.3.2.2. Diffusion FGMs .......................................................................................................... 267 10.3.3. FGM Turbulent Closure ....................................................................................................... 267 10.3.4. Calculation of Unburnt Properties ....................................................................................... 269 10.3.5. Laminar Flame Speed ......................................................................................................... 269 11. Composition PDF Transport .............................................................................................................. 271 11.1. Overview and Limitations ............................................................................................................ 271 11.2. Composition PDF Transport Theory ............................................................................................. 271 11.3.The Lagrangian Solution Method ................................................................................................. 272 11.3.1. Particle Convection ............................................................................................................ 273 11.3.2. Particle Mixing ................................................................................................................... 274 11.3.2.1.The Modified Curl Model ............................................................................................ 274 11.3.2.2.The IEM Model ........................................................................................................... 274 11.3.2.3. The EMST Model ........................................................................................................ 275 11.3.2.4. Liquid Reactions ........................................................................................................ 275 11.3.3. Particle Reaction ................................................................................................................. 275 11.4. The Eulerian Solution Method ..................................................................................................... 276 11.4.1. Reaction ............................................................................................................................. 277 11.4.2. Mixing ................................................................................................................................ 277 11.4.3. Correction .......................................................................................................................... 278 11.4.4. Calculation of Composition Mean and Variance ................................................................... 278 12. Chemistry Acceleration ..................................................................................................................... 279 12.1. Overview and Limitations ............................................................................................................ 279 xi Release 16.0 - © SAS IP, Inc. All rights reserved. - Contains proprietary and confidential information of ANSYS, Inc. and its subsidiaries and affiliates. Theory Guide 12.2. In-Situ Adaptive Tabulation (ISAT) ................................................................................................ 279 12.3. Dynamic Mechanism Reduction .................................................................................................. 281 12.3.1. Directed Relation Graph (DRG) Method for Mechanism Reduction ....................................... 282 12.4. Chemistry Agglomeration ........................................................................................................... 283 12.4.1. Binning Algorithm .............................................................................................................. 284 12.5. Chemical Mechanism Dimension Reduction ................................................................................ 286 12.5.1. Selecting the Represented Species ...................................................................................... 286 13. Engine Ignition .................................................................................................................................. 289 13.1. Spark Model ................................................................................................................................ 289 13.1.1. Overview and Limitations ................................................................................................... 289 13.1.2. Spark Model Theory ............................................................................................................ 289 13.1.3. ECFM Spark Model Variants ................................................................................................. 292 13.2. Autoignition Models ................................................................................................................... 293 13.2.1. Model Overview ................................................................................................................. 293 13.2.2. Model Limitations .............................................................................................................. 293 13.2.3. Ignition Model Theory ........................................................................................................ 294 13.2.3.1.Transport of Ignition Species ...................................................................................... 294 13.2.3.2. Knock Modeling ........................................................................................................ 294 13.2.3.2.1. Modeling of the Source Term ............................................................................. 295 13.2.3.2.2. Correlations ...................................................................................................... 295 13.2.3.2.3. Energy Release .................................................................................................. 296 13.2.3.3. Ignition Delay Modeling ............................................................................................. 296 13.2.3.3.1. Modeling of the Source Term ............................................................................. 296 13.2.3.3.2. Correlations ...................................................................................................... 297 13.2.3.3.3. Energy Release .................................................................................................. 297 13.3. Crevice Model ............................................................................................................................. 297 13.3.1. Overview ........................................................................................................................... 297 13.3.1.1. Model Parameters ...................................................................................................... 298 13.3.2. Limitations ......................................................................................................................... 299 13.3.3. Crevice Model Theory ......................................................................................................... 300 14. Pollutant Formation .......................................................................................................................... 301 14.1. NOx Formation ........................................................................................................................... 301 14.1.1. Overview ........................................................................................................................... 301 14.1.1.1. NOx Modeling in ANSYS Fluent .................................................................................. 301 14.1.1.2. NOx Formation and Reduction in Flames .................................................................... 302 14.1.2. Governing Equations for NOx Transport .............................................................................. 302 14.1.3.Thermal NOx Formation ...................................................................................................... 303 14.1.3.1. Thermal NOx Reaction Rates ...................................................................................... 303 14.1.3.2. The Quasi-Steady Assumption for [N] ......................................................................... 303 14.1.3.3.Thermal NOx Temperature Sensitivity ......................................................................... 304 14.1.3.4. Decoupled Thermal NOx Calculations ......................................................................... 304 14.1.3.5. Approaches for Determining O Radical Concentration ................................................ 304 14.1.3.5.1. Method 1: Equilibrium Approach ....................................................................... 304 14.1.3.5.2. Method 2: Partial Equilibrium Approach ............................................................. 305 14.1.3.5.3. Method 3: Predicted O Approach ....................................................................... 305 14.1.3.6. Approaches for Determining OH Radical Concentration .............................................. 305 14.1.3.6.1. Method 1: Exclusion of OH Approach ................................................................. 305 14.1.3.6.2. Method 2: Partial Equilibrium Approach ............................................................. 305 14.1.3.6.3. Method 3: Predicted OH Approach ..................................................................... 306 14.1.3.7. Summary ................................................................................................................... 306 14.1.4. Prompt NOx Formation ....................................................................................................... 306 14.1.4.1. Prompt NOx Combustion Environments ..................................................................... 306 Release 16.0 - © SAS IP, Inc. All rights reserved. - Contains proprietary and confidential information xii of ANSYS, Inc. and its subsidiaries and affiliates. Theory Guide 14.1.4.2. Prompt NOx Mechanism ............................................................................................ 306 14.1.4.3. Prompt NOx Formation Factors .................................................................................. 307 14.1.4.4. Primary Reaction ....................................................................................................... 307 14.1.4.5. Modeling Strategy ..................................................................................................... 307 14.1.4.6. Rate for Most Hydrocarbon Fuels ................................................................................ 308 14.1.4.7. Oxygen Reaction Order .............................................................................................. 308 14.1.5. Fuel NOx Formation ............................................................................................................ 308 14.1.5.1. Fuel-Bound Nitrogen ................................................................................................. 308 14.1.5.2. Reaction Pathways ..................................................................................................... 309 14.1.5.3. Fuel NOx from Gaseous and Liquid Fuels .................................................................... 309 14.1.5.3.1. Fuel NOx from Intermediate Hydrogen Cyanide (HCN) ....................................... 309 14.1.5.3.1.1. HCN Production in a Gaseous Fuel ............................................................ 310 14.1.5.3.1.2. HCN Production in a Liquid Fuel ................................................................ 310 14.1.5.3.1.3. HCN Consumption .................................................................................... 311 14.1.5.3.1.4. HCN Sources in the Transport Equation ..................................................... 311 14.1.5.3.1.5. NOx Sources in the Transport Equation ..................................................... 311 14.1.5.3.2. Fuel NOx from Intermediate Ammonia (NH3) ..................................................... 312 14.1.5.3.2.1. NH3 Production in a Gaseous Fuel ............................................................. 312 14.1.5.3.2.2. NH3 Production in a Liquid Fuel ................................................................ 312 14.1.5.3.2.3. NH3 Consumption .................................................................................... 313 14.1.5.3.2.4. NH3 Sources in the Transport Equation ..................................................... 313 14.1.5.3.2.5. NOx Sources in the Transport Equation ..................................................... 313 14.1.5.3.3. Fuel NOx from Coal ........................................................................................... 314 14.1.5.3.3.1. Nitrogen in Char and in Volatiles ............................................................... 314 14.1.5.3.3.2. Coal Fuel NOx Scheme A ........................................................................... 314 14.1.5.3.3.3. Coal Fuel NOx Scheme B ........................................................................... 314 14.1.5.3.3.4. HCN Scheme Selection ............................................................................. 315 14.1.5.3.3.5. NOx Reduction on Char Surface ................................................................ 315 14.1.5.3.3.5.1. BET Surface Area .............................................................................. 316 14.1.5.3.3.5.2. HCN from Volatiles ........................................................................... 316 14.1.5.3.3.6. Coal Fuel NOx Scheme C ........................................................................... 316 14.1.5.3.3.7. Coal Fuel NOx Scheme D ........................................................................... 317 14.1.5.3.3.8. NH3 Scheme Selection ............................................................................. 318 14.1.5.3.3.8.1. NH3 from Volatiles ........................................................................... 318 14.1.5.3.4. Fuel Nitrogen Partitioning for HCN and NH3 Intermediates ................................ 318 14.1.6. NOx Formation from Intermediate N2O ............................................................................... 319 14.1.6.1. N2O - Intermediate NOx Mechanism .......................................................................... 319 14.1.7. NOx Reduction by Reburning ............................................................................................. 320 14.1.7.1. Instantaneous Approach ............................................................................................ 320 14.1.7.2. Partial Equilibrium Approach ..................................................................................... 321 14.1.7.2.1. NOx Reduction Mechanism ............................................................................... 321 14.1.8. NOx Reduction by SNCR ..................................................................................................... 323 14.1.8.1. Ammonia Injection .................................................................................................... 323 14.1.8.2. Urea Injection ............................................................................................................ 324 14.1.8.3. Transport Equations for Urea, HNCO, and NCO ............................................................ 325 14.1.8.4. Urea Production due to Reagent Injection .................................................................. 326 14.1.8.5. NH3 Production due to Reagent Injection ................................................................... 326 14.1.8.6. HNCO Production due to Reagent Injection ................................................................ 326 14.1.9. NOx Formation in Turbulent Flows ...................................................................................... 327 14.1.9.1. The Turbulence-Chemistry Interaction Model ............................................................. 327 14.1.9.2. The PDF Approach ..................................................................................................... 328 14.1.9.3.The General Expression for the Mean Reaction Rate .................................................... 328 xiii Release 16.0 - © SAS IP, Inc. All rights reserved. - Contains proprietary and confidential information of ANSYS, Inc. and its subsidiaries and affiliates. Theory Guide 14.1.9.4.The Mean Reaction Rate Used in ANSYS Fluent ........................................................... 328 14.1.9.5. Statistical Independence ............................................................................................ 328 14.1.9.6.The Beta PDF Option .................................................................................................. 329 14.1.9.7.The Gaussian PDF Option ........................................................................................... 329 14.1.9.8. The Calculation Method for the Variance .................................................................... 329 14.2. SOx Formation ............................................................................................................................ 330 14.2.1. Overview ........................................................................................................................... 330 14.2.1.1.The Formation of SOx ................................................................................................. 330 14.2.2. Governing Equations for SOx Transport ............................................................................... 331 14.2.3. Reaction Mechanisms for Sulfur Oxidation .......................................................................... 332 14.2.4. SO2 and H2S Production in a Gaseous Fuel ......................................................................... 333 14.2.5. SO2 and H2S Production in a Liquid Fuel ............................................................................. 334 14.2.6. SO2 and H2S Production from Coal ..................................................................................... 334 14.2.6.1. SO2 and H2S from Char .............................................................................................. 334 14.2.6.2. SO2 and H2S from Volatiles ........................................................................................ 334 14.2.7. SOx Formation in Turbulent Flows ....................................................................................... 335 14.2.7.1. The Turbulence-Chemistry Interaction Model ............................................................. 335 14.2.7.2. The PDF Approach ..................................................................................................... 335 14.2.7.3.The Mean Reaction Rate ............................................................................................. 335 14.2.7.4.The PDF Options ........................................................................................................ 335 14.3. Soot Formation ........................................................................................................................... 335 14.3.1. Overview and Limitations ................................................................................................... 336 14.3.1.1. Predicting Soot Formation ......................................................................................... 336 14.3.1.2. Restrictions on Soot Modeling ................................................................................... 336 14.3.2. Soot Model Theory ............................................................................................................. 337 14.3.2.1.The One-Step Soot Formation Model .......................................................................... 337 14.3.2.2.The Two-Step Soot Formation Model .......................................................................... 338 14.3.2.2.1. Soot Generation Rate ........................................................................................ 338 14.3.2.2.2. Nuclei Generation Rate ...................................................................................... 339 14.3.2.3. The Moss-Brookes Model ........................................................................................... 339 14.3.2.3.1.The Moss-Brookes-Hall Model ............................................................................ 341 14.3.2.3.2. Soot Formation in Turbulent Flows .................................................................... 342 14.3.2.3.2.1.The Turbulence-Chemistry Interaction Model ............................................ 342 14.3.2.3.2.2.The PDF Approach .................................................................................... 343 14.3.2.3.2.3. The Mean Reaction Rate ........................................................................... 343 14.3.2.3.2.4.The PDF Options ....................................................................................... 343 14.3.2.3.3.The Effect of Soot on the Radiation Absorption Coefficient ................................. 343 14.3.2.4.The Method of Moments Model ................................................................................. 343 14.3.2.4.1. Soot Particle Population Balance ....................................................................... 343 14.3.2.4.2. Moment Transport Equations ............................................................................ 345 14.3.2.4.3. Nucleation ........................................................................................................ 345 14.3.2.4.4. Coagulation ...................................................................................................... 347 14.3.2.4.5. Surface Growth and Oxidation ........................................................................... 350 14.4. Decoupled Detailed Chemistry Model ......................................................................................... 352 14.4.1. Overview ........................................................................................................................... 352 14.4.1.1. Limitations ................................................................................................................ 352 14.4.2. Decoupled Detailed Chemistry Model Theory ..................................................................... 353 15. Aerodynamically Generated Noise ................................................................................................... 355 15.1. Overview .................................................................................................................................... 355 15.1.1. Direct Method .................................................................................................................... 355 15.1.2. Integral Method Based on Acoustic Analogy ....................................................................... 356 15.1.3. Broadband Noise Source Models ........................................................................................ 357 Release 16.0 - © SAS IP, Inc. All rights reserved. - Contains proprietary and confidential information xiv of ANSYS, Inc. and its subsidiaries and affiliates. Theory Guide 15.2. Acoustics Model Theory .............................................................................................................. 357 15.2.1. The Ffowcs-Williams and Hawkings Model .......................................................................... 357 15.2.2. Broadband Noise Source Models ........................................................................................ 360 15.2.2.1. Proudman’s Formula .................................................................................................. 360 15.2.2.2.The Jet Noise Source Model ........................................................................................ 361 15.2.2.3.The Boundary Layer Noise Source Model .................................................................... 362 15.2.2.4. Source Terms in the Linearized Euler Equations ........................................................... 363 15.2.2.5. Source Terms in Lilley’s Equation ................................................................................ 363 16. Discrete Phase ................................................................................................................................... 365 16.1. Introduction ............................................................................................................................... 365 16.1.1.The Euler-Lagrange Approach ............................................................................................. 365 16.2. Particle Motion Theory ................................................................................................................ 366 16.2.1. Equations of Motion for Particles ........................................................................................ 366 16.2.1.1. Particle Force Balance ................................................................................................ 366 16.2.1.2. Inclusion of the Gravity Term ...................................................................................... 366 16.2.1.3. Other Forces .............................................................................................................. 366 16.2.1.4. Forces in Moving Reference Frames ............................................................................ 367 16.2.1.5.Thermophoretic Force ................................................................................................ 367 16.2.1.6. Brownian Force .......................................................................................................... 368 16.2.1.7. Saffman’s Lift Force .................................................................................................... 368 16.2.2.Turbulent Dispersion of Particles ......................................................................................... 368 16.2.2.1. Stochastic Tracking .................................................................................................... 369 16.2.2.1.1. The Integral Time .............................................................................................. 369 16.2.2.1.2.The Discrete Random Walk Model ...................................................................... 370 16.2.2.1.3. Using the DRW Model ....................................................................................... 371 16.2.2.2. Particle Cloud Tracking ............................................................................................... 371 16.2.2.2.1. Using the Cloud Model ...................................................................................... 374 16.2.3. Integration of Particle Equation of Motion ........................................................................... 374 16.3. Laws for Drag Coefficients ........................................................................................................... 376 16.3.1. Spherical Drag Law ............................................................................................................. 376 16.3.2. Non-spherical Drag Law ..................................................................................................... 376 16.3.3. Stokes-Cunningham Drag Law ............................................................................................ 377 16.3.4. High-Mach-Number Drag Law ............................................................................................ 377 16.3.5. Dynamic Drag Model Theory .............................................................................................. 377 16.3.6. Dense Discrete Phase Model Drag Laws .............................................................................. 378 16.4. Laws for Heat and Mass Exchange ............................................................................................... 378 16.4.1. Inert Heating or Cooling (Law 1/Law 6) ............................................................................... 379 16.4.2. Droplet Vaporization (Law 2) ............................................................................................... 381 16.4.2.1. Mass Transfer During Law 2—Diffusion Controlled Model ........................................... 381 16.4.2.2. Mass Transfer During Law 2—Convection/Diffusion Controlled Model ........................ 382 16.4.2.3. Defining the Saturation Vapor Pressure and Diffusion Coefficient (or Binary Diffusivity) ......................................................................................................................................... 383 16.4.2.4. Defining the Boiling Point and Latent Heat ................................................................. 384 16.4.2.5. Heat Transfer to the Droplet ....................................................................................... 384 16.4.3. Droplet Boiling (Law 3) ....................................................................................................... 385 16.4.4. Devolatilization (Law 4) ...................................................................................................... 386 16.4.4.1. Choosing the Devolatilization Model .......................................................................... 387 16.4.4.2.The Constant Rate Devolatilization Model ................................................................... 387 16.4.4.3. The Single Kinetic Rate Model .................................................................................... 387 16.4.4.4.The Two Competing Rates (Kobayashi) Model ............................................................. 388 16.4.4.5. The CPD Model .......................................................................................................... 389 16.4.4.5.1. General Description .......................................................................................... 389 xv Release 16.0 - © SAS IP, Inc. All rights reserved. - Contains proprietary and confidential information of ANSYS, Inc. and its subsidiaries and affiliates. Theory Guide 16.4.4.5.2. Reaction Rates .................................................................................................. 390 16.4.4.5.3. Mass Conservation ............................................................................................ 390 16.4.4.5.4. Fractional Change in the Coal Mass .................................................................... 391 16.4.4.5.5. CPD Inputs ........................................................................................................ 392 16.4.4.5.6. Particle Swelling During Devolatilization ............................................................ 393 16.4.4.5.7. Heat Transfer to the Particle During Devolatilization ........................................... 393 16.4.5. Surface Combustion (Law 5) ............................................................................................... 394 16.4.5.1.The Diffusion-Limited Surface Reaction Rate Model .................................................... 394 16.4.5.2.The Kinetic/Diffusion Surface Reaction Rate Model ..................................................... 395 16.4.5.3. The Intrinsic Model .................................................................................................... 395 16.4.5.4.The Multiple Surface Reactions Model ........................................................................ 397 16.4.5.4.1. Limitations ........................................................................................................ 397 16.4.5.5. Heat and Mass Transfer During Char Combustion ....................................................... 397 16.4.6. Multicomponent Particle Definition (Law 7) ........................................................................ 398 16.4.6.1. Raoult’s Law .............................................................................................................. 400 16.4.6.2. Peng-Robinson Real Gas Model .................................................................................. 400 16.5.Vapor Liquid Equilibrium Theory .................................................................................................. 400 16.6.Wall-Jet Model Theory ................................................................................................................. 402 16.7.Wall-Film Model Theory ............................................................................................................... 403 16.7.1. Introduction ....................................................................................................................... 403 16.7.2. Interaction During Impact with a Boundary ......................................................................... 404 16.7.3. Splashing ........................................................................................................................... 406 16.7.4. Separation Criteria .............................................................................................................. 408 16.7.5. Conservation Equations for Wall-Film Particles .................................................................... 408 16.7.5.1. Momentum ............................................................................................................... 408 16.7.5.2. Mass Transfer from the Film ........................................................................................ 409 16.7.5.3. Energy Transfer from the Film ..................................................................................... 412 16.8. Particle Erosion and Accretion Theory .......................................................................................... 413 16.9. Particle–Wall Impingement Heat Transfer Theory ......................................................................... 415 16.10. Atomizer Model Theory ............................................................................................................. 416 16.10.1.The Plain-Orifice Atomizer Model ...................................................................................... 417 16.10.1.1. Internal Nozzle State ................................................................................................ 418 16.10.1.2. Coefficient of Discharge ........................................................................................... 419 16.10.1.3. Exit Velocity ............................................................................................................. 421 16.10.1.4. Spray Angle ............................................................................................................. 421 16.10.1.5. Droplet Diameter Distribution .................................................................................. 421 16.10.2. The Pressure-Swirl Atomizer Model ................................................................................... 423 16.10.2.1. Film Formation ........................................................................................................ 423 16.10.2.2. Sheet Breakup and Atomization ............................................................................... 424 16.10.3.The Air-Blast/Air-Assist Atomizer Model ............................................................................. 426 16.10.4.The Flat-Fan Atomizer Model ............................................................................................. 427 16.10.5.The Effervescent Atomizer Model ...................................................................................... 428 16.11. Secondary Breakup Model Theory ............................................................................................. 429 16.11.1.Taylor Analogy Breakup (TAB) Model ................................................................................. 429 16.11.1.1. Introduction ............................................................................................................ 429 16.11.1.2. Use and Limitations ................................................................................................. 430 16.11.1.3. Droplet Distortion .................................................................................................... 430 16.11.1.4. Size of Child Droplets ............................................................................................... 431 16.11.1.5.Velocity of Child Droplets ......................................................................................... 432 16.11.1.6. Droplet Breakup ...................................................................................................... 432 16.11.2.Wave Breakup Model ........................................................................................................ 433 16.11.2.1. Introduction ............................................................................................................ 433 Release 16.0 - © SAS IP, Inc. All rights reserved. - Contains proprietary and confidential information xvi of ANSYS, Inc. and its subsidiaries and affiliates. Theory Guide 16.11.2.2. Use and Limitations ................................................................................................. 434 16.11.2.3. Jet Stability Analysis ................................................................................................. 434 16.11.2.4. Droplet Breakup ...................................................................................................... 435 16.11.3. KHRT Breakup Model ........................................................................................................ 436 16.11.3.1. Introduction ............................................................................................................ 436 16.11.3.2. Use and Limitations ................................................................................................. 436 16.11.3.3. Liquid Core Length .................................................................................................. 436 16.11.3.4. Rayleigh-Taylor Breakup ........................................................................................... 437 16.11.3.5. Droplet Breakup Within the Liquid Core .................................................................... 438 16.11.3.6. Droplet Breakup Outside the Liquid Core .................................................................. 438 16.11.4. Stochastic Secondary Droplet (SSD) Model ........................................................................ 438 16.11.4.1. Theory ..................................................................................................................... 438 16.12. Collision and Droplet Coalescence Model Theory ....................................................................... 439 16.12.1. Introduction ..................................................................................................................... 439 16.12.2. Use and Limitations .......................................................................................................... 440 16.12.3.Theory .............................................................................................................................. 440 16.12.3.1. Probability of Collision ............................................................................................. 440 16.12.3.2. Collision Outcomes .................................................................................................. 441 16.13. Discrete Element Method Collision Model .................................................................................. 442 16.13.1.Theory .............................................................................................................................. 442 16.13.1.1. The Spring Collision Law .......................................................................................... 443 16.13.1.2. The Spring-Dashpot Collision Law ............................................................................ 444 16.13.1.3.The Friction Collision Law ......................................................................................... 444 16.13.1.4. DEM Parcels ............................................................................................................. 446 16.13.1.5. Cartesian Collision Mesh .......................................................................................... 446 16.14. One-Way and Two-Way Coupling ............................................................................................... 447 16.14.1. Coupling Between the Discrete and Continuous Phases .................................................... 447 16.14.2. Momentum Exchange ...................................................................................................... 448 16.14.3. Heat Exchange ................................................................................................................. 449 16.14.4. Mass Exchange ................................................................................................................. 450 16.14.5. Under-Relaxation of the Interphase Exchange Terms ......................................................... 450 16.14.6. Interphase Exchange During Stochastic Tracking ............................................................... 451 16.14.7. Interphase Exchange During Cloud Tracking ..................................................................... 451 16.15. Node Based Averaging .............................................................................................................. 451 17. Multiphase Flows .............................................................................................................................. 453 17.1. Introduction ............................................................................................................................... 453 17.1.1. Multiphase Flow Regimes ................................................................................................... 453 17.1.1.1. Gas-Liquid or Liquid-Liquid Flows .............................................................................. 453 17.1.1.2. Gas-Solid Flows .......................................................................................................... 454 17.1.1.3. Liquid-Solid Flows ...................................................................................................... 454 17.1.1.4. Three-Phase Flows ..................................................................................................... 454 17.1.2. Examples of Multiphase Systems ........................................................................................ 455 17.2. Choosing a General Multiphase Model ........................................................................................ 456 17.2.1. Approaches to Multiphase Modeling .................................................................................. 456 17.2.1.1.The Euler-Euler Approach ........................................................................................... 456 17.2.1.1.1.The VOF Model .................................................................................................. 456 17.2.1.1.2. The Mixture Model ............................................................................................ 457 17.2.1.1.3.The Eulerian Model ............................................................................................ 457 17.2.2. Model Comparisons ........................................................................................................... 457 17.2.2.1. Detailed Guidelines ................................................................................................... 458 17.2.2.1.1.The Effect of Particulate Loading ........................................................................ 458 17.2.2.1.2.The Significance of the Stokes Number .............................................................. 459 xvii Release 16.0 - © SAS IP, Inc. All rights reserved. - Contains proprietary and confidential information of ANSYS, Inc. and its subsidiaries and affiliates. Theory Guide 17.2.2.1.2.1. Examples .................................................................................................. 459 17.2.2.1.3. Other Considerations ........................................................................................ 460 17.2.3.Time Schemes in Multiphase Flow ....................................................................................... 460 17.2.4. Stability and Convergence .................................................................................................. 461 17.3.Volume of Fluid (VOF) Model Theory ............................................................................................ 462 17.3.1. Overview of the VOF Model ................................................................................................ 462 17.3.2. Limitations of the VOF Model .............................................................................................. 462 17.3.3. Steady-State and Transient VOF Calculations ....................................................................... 462 17.3.4.Volume Fraction Equation ................................................................................................... 463 17.3.4.1. The Implicit Formulation ............................................................................................ 463 17.3.4.2.The Explicit Formulation ............................................................................................. 464 17.3.4.3. Interpolation Near the Interface ................................................................................. 465 17.3.4.3.1. The Geometric Reconstruction Scheme ............................................................. 466 17.3.4.3.2.The Donor-Acceptor Scheme ............................................................................. 466 17.3.4.3.3.The Compressive Interface Capturing Scheme for Arbitrary Meshes (CICSAM) ..... 467 17.3.4.3.4.The Compressive Scheme and Interface-Model-based Variants ........................... 467 17.3.4.3.5. Bounded Gradient Maximization (BGM) ............................................................. 468 17.3.5. Material Properties ............................................................................................................. 468 17.3.6. Momentum Equation ......................................................................................................... 468 17.3.7. Energy Equation ................................................................................................................. 469 17.3.8. Additional Scalar Equations ................................................................................................ 469 17.3.9. Surface Tension and Adhesion ............................................................................................ 469 17.3.9.1. Surface Tension ......................................................................................................... 470 17.3.9.1.1. The Continuum Surface Force Model ................................................................. 470 17.3.9.1.2.The Continuum Surface Stress Model ................................................................. 471 17.3.9.1.3. Comparing the CSS and CSF Methods ................................................................ 471 17.3.9.1.4.When Surface Tension Effects Are Important ...................................................... 472 17.3.9.2.Wall Adhesion ............................................................................................................ 472 17.3.9.3. Jump Adhesion .......................................................................................................... 472 17.3.10. Open Channel Flow .......................................................................................................... 473 17.3.10.1. Upstream Boundary Conditions ............................................................................... 474 17.3.10.1.1. Pressure Inlet .................................................................................................. 474 17.3.10.1.2. Mass Flow Rate ................................................................................................ 474 17.3.10.1.3.Volume Fraction Specification .......................................................................... 475 17.3.10.2. Downstream Boundary Conditions ........................................................................... 475 17.3.10.2.1. Pressure Outlet ................................................................................................ 475 17.3.10.2.2. Outflow Boundary ........................................................................................... 475 17.3.10.2.3. Backflow Volume Fraction Specification ........................................................... 476 17.3.10.3. Numerical Beach Treatment ..................................................................................... 476 17.3.11. Open Channel Wave Boundary Conditions ........................................................................ 477 17.3.11.1. Airy Wave Theory ..................................................................................................... 478 17.3.11.2. Stokes Wave Theories ............................................................................................... 479 17.3.11.3. Cnoidal/Solitary Wave Theory ................................................................................... 480 17.3.11.4. Choosing a Wave Theory .......................................................................................... 481 17.3.11.5. Superposition of Waves ............................................................................................ 483 17.3.11.6. Modeling of Random Waves Using Wave Spectrum ................................................... 484 17.3.11.6.1. Definitions ...................................................................................................... 484 17.3.11.6.2.Wave Spectrum Implementation Theory .......................................................... 484 17.3.11.6.2.1. Long-Crested Random Waves (Unidirectional) ......................................... 484 17.3.11.6.2.1.1. Pierson-Moskowitz Spectrum ......................................................... 485 17.3.11.6.2.1.2. JONSWAP Spectrum ....................................................................... 485 17.3.11.6.2.1.3. TMA Spectrum ............................................................................... 485 Release 16.0 - © SAS IP, Inc. All rights reserved. - Contains proprietary and confidential information xviii of ANSYS, Inc. and its subsidiaries and affiliates. Theory Guide 17.3.11.6.2.2. Short-Crested Random Waves (Multi-Directional) .................................... 486 17.3.11.6.2.2.1. Cosine-2s Power Function (Frequency Independent) ....................... 486 17.3.11.6.2.2.2. Hyperbolic Function (Frequency Dependent) ................................. 487 17.3.11.6.2.3. Superposition of Individual Wave Components Using the Wave Spectrum ........................................................................................................................... 487 17.3.11.6.3. Choosing a Wave Spectrum and Inputs ............................................................ 488 17.3.11.7. Nomenclature for Open Channel Waves .................................................................... 490 17.3.12. Coupled Level-Set and VOF Model .................................................................................... 491 17.3.12.1. Theory ..................................................................................................................... 491 17.3.12.1.1. Surface Tension Force ...................................................................................... 492 17.3.12.1.2. Re-initialization of the Level-set Function via the Geometrical Method ............. 493 17.3.12.2. Limitations .............................................................................................................. 495 17.4. Mixture Model Theory ................................................................................................................. 495 17.4.1. Overview ........................................................................................................................... 495 17.4.2. Limitations ......................................................................................................................... 495 17.4.3. Continuity Equation ........................................................................................................... 496 17.4.4. Momentum Equation ......................................................................................................... 496 17.4.5. Energy Equation ................................................................................................................. 497 17.4.6. Relative (Slip) Velocity and the Drift Velocity ........................................................................ 497 17.4.7.Volume Fraction Equation for the Secondary Phases ............................................................ 499 17.4.8. Granular Properties ............................................................................................................ 499 17.4.8.1. Collisional Viscosity .................................................................................................... 499 17.4.8.2. Kinetic Viscosity ......................................................................................................... 500 17.4.9. Granular Temperature ......................................................................................................... 500 17.4.10. Solids Pressure ................................................................................................................. 501 17.4.11. Interfacial Area Concentration .......................................................................................... 501 17.4.11.1. Hibiki-Ishii Model ..................................................................................................... 502 17.4.11.2. Ishii-Kim Model ........................................................................................................ 502 17.4.11.3.Yao-Morel Model ...................................................................................................... 503 17.5. Eulerian Model Theory ................................................................................................................ 505 17.5.1. Overview of the Eulerian Model .......................................................................................... 505 17.5.2. Limitations of the Eulerian Model ........................................................................................ 506 17.5.3.Volume Fraction Equation ................................................................................................... 506 17.5.4. Conservation Equations ...................................................................................................... 507 17.5.4.1. Equations in General Form ......................................................................................... 507 17.5.4.1.1. Conservation of Mass ........................................................................................ 507 17.5.4.1.2. Conservation of Momentum .............................................................................. 507 17.5.4.1.3. Conservation of Energy ..................................................................................... 508 17.5.4.2. Equations Solved by ANSYS Fluent ............................................................................. 508 17.5.4.2.1. Continuity Equation .......................................................................................... 508 17.5.4.2.2. Fluid-Fluid Momentum Equations ...................................................................... 509 17.5.4.2.3. Fluid-Solid Momentum Equations ...................................................................... 509 17.5.4.2.4. Conservation of Energy ..................................................................................... 509 17.5.5. Interfacial Area Concentration ............................................................................................ 510 17.5.6. Interphase Exchange Coefficients ....................................................................................... 510 17.5.6.1. Fluid-Fluid Exchange Coefficient ................................................................................ 511 17.5.6.1.1. Schiller and Naumann Model ............................................................................. 511 17.5.6.1.2. Morsi and Alexander Model ............................................................................... 512 17.5.6.1.3. Symmetric Model .............................................................................................. 512 17.5.6.1.4. Grace et al. Model .............................................................................................. 513 17.5.6.1.5.Tomiyama et al. Model ....................................................................................... 514 17.5.6.1.6. Ishii Model ........................................................................................................ 514 xix Release 16.0 - © SAS IP, Inc. All rights reserved. - Contains proprietary and confidential information of ANSYS, Inc. and its subsidiaries and affiliates. Theory Guide 17.5.6.1.7. Universal Drag Laws for Bubble-Liquid and Droplet-Gas Flows ........................... 515 17.5.6.1.7.1. Bubble-Liquid Flow .................................................................................. 515 17.5.6.1.7.2. Droplet-Gas Flow ...................................................................................... 516 17.5.6.2. Fluid-Solid Exchange Coefficient ................................................................................ 517 17.5.6.3. Solid-Solid Exchange Coefficient ................................................................................ 519 17.5.6.4. Drag Modification ...................................................................................................... 520 17.5.6.4.1. Brucato Correlation ........................................................................................... 520 17.5.7. Lift Force ............................................................................................................................ 520 17.5.7.1. Lift Coefficient Models ............................................................................................... 521 17.5.7.1.1. Moraga Lift Force Model .................................................................................... 521 17.5.7.1.2. Saffman-Mei Lift Force Model ............................................................................ 522 17.5.7.1.3. Legendre-Magnaudet Lift Force Model .............................................................. 522 17.5.7.1.4.Tomiyama Lift Force Model ................................................................................ 523 17.5.8. Wall Lubrication Force ........................................................................................................ 523 17.5.8.1.Wall Lubrication Models ............................................................................................. 524 17.5.8.1.1. Antal et al. Model .............................................................................................. 524 17.5.8.1.2.Tomiyama Model ............................................................................................... 524 17.5.8.1.3. Frank Model ...................................................................................................... 525 17.5.8.1.4. Hosokawa Model .............................................................................................. 525 17.5.9. Turbulent Dispersion Force ................................................................................................. 526 17.5.9.1. Models for Turbulent Dispersion Force ....................................................................... 526 17.5.9.1.1. Lopez de Bertodano Model ............................................................................... 526 17.5.9.1.2. Simonin Model .................................................................................................. 527 17.5.9.1.3. Burns et al. Model .............................................................................................. 527 17.5.9.1.4. Diffusion in VOF Model ...................................................................................... 527 17.5.9.2. Limiting Functions for the Turbulent Dispersion Force ................................................ 528 17.5.10.Virtual Mass Force ............................................................................................................. 529 17.5.11. Solids Pressure ................................................................................................................. 529 17.5.11.1. Radial Distribution Function ..................................................................................... 530 17.5.12. Maximum Packing Limit in Binary Mixtures ....................................................................... 532 17.5.13. Solids Shear Stresses ......................................................................................................... 532 17.5.13.1. Collisional Viscosity .................................................................................................. 532 17.5.13.2. Kinetic Viscosity ....................................................................................................... 532 17.5.13.3. Bulk Viscosity ........................................................................................................... 533 17.5.13.4. Frictional Viscosity ................................................................................................... 533 17.5.14. Granular Temperature ....................................................................................................... 534 17.5.15. Description of Heat Transfer .............................................................................................. 536 17.5.15.1. The Heat Exchange Coefficient ................................................................................. 536 17.5.15.1.1. Constant ......................................................................................................... 537 17.5.15.1.2. Nusselt Number .............................................................................................. 537 17.5.15.1.3. Ranz-Marshall Model ....................................................................................... 537 17.5.15.1.4.Tomiyama Model ............................................................................................. 537 17.5.15.1.5. Hughmark Model ............................................................................................ 537 17.5.15.1.6. Gunn Model .................................................................................................... 537 17.5.15.1.7. Two-Resistance Model ..................................................................................... 538 17.5.15.1.8. Fixed To Saturation Temperature ...................................................................... 538 17.5.15.1.9. User Defined ................................................................................................... 539 17.5.16. Turbulence Models ........................................................................................................... 539 17.5.16.1. k- ε Turbulence Models ............................................................................................. 540 17.5.16.1.1. k- ε Mixture Turbulence Model ......................................................................... 540 17.5.16.1.2. k- ε Dispersed Turbulence Model ..................................................................... 541 17.5.16.1.2.1. Assumptions .......................................................................................... 541 Release 16.0 - © SAS IP, Inc. All rights reserved. - Contains proprietary and confidential information xx of ANSYS, Inc. and its subsidiaries and affiliates. Theory Guide 17.5.16.1.2.2. Turbulence in the Continuous Phase ....................................................... 542 17.5.16.1.2.3.Turbulence in the Dispersed Phase .......................................................... 542 17.5.16.1.3. k- ε Turbulence Model for Each Phase ............................................................... 543 17.5.16.1.3.1.Transport Equations ................................................................................ 543 17.5.16.2. RSM Turbulence Models ........................................................................................... 544 17.5.16.2.1. RSM Dispersed Turbulence Model .................................................................... 544 17.5.16.2.2. RSM Mixture Turbulence Model ....................................................................... 545 17.5.16.3. Turbulence Interaction Models ................................................................................. 546 17.5.16.3.1. Simonin et al. .................................................................................................. 546 17.5.16.3.1.1. Formulation in Dispersed Turbulence Models .......................................... 546 17.5.16.3.1.1.1. Continuous Phase .......................................................................... 546 17.5.16.3.1.1.2. Dispersed Phases ........................................................................... 547 17.5.16.3.1.2. Formulation in Per Phase Turbulence Models ........................................... 548 17.5.16.3.2. Troshko-Hassan ............................................................................................... 548 17.5.16.3.2.1.Troshko-Hassan Formulation in Mixture Turbulence Models ..................... 548 17.5.16.3.2.2. Troshko-Hassan Formulation in Dispersed Turbulence Models ................. 549 17.5.16.3.2.2.1. Continuous Phase .......................................................................... 549 17.5.16.3.2.2.2. Dispersed Phases ........................................................................... 549 17.5.16.3.2.3.Troshko-Hassan Formulation in Per-Phase Turbulence Models .................. 549 17.5.16.3.2.3.1. Continuous Phase .......................................................................... 549 17.5.16.3.2.3.2. Dispersed Phases ........................................................................... 549 17.5.16.3.3. Sato ................................................................................................................ 550 17.5.16.3.4. None ............................................................................................................... 550 17.5.17. Solution Method in ANSYS Fluent ..................................................................................... 550 17.5.17.1.The Pressure-Correction Equation ............................................................................. 550 17.5.17.2. Volume Fractions ..................................................................................................... 550 17.5.18. Dense Discrete Phase Model ............................................................................................. 551 17.5.18.1. Limitations .............................................................................................................. 552 17.5.18.2. Granular Temperature .............................................................................................. 552 17.5.19. Multi-Fluid VOF Model ...................................................................................................... 553 17.5.20. Wall Boiling Models .......................................................................................................... 554 17.5.20.1. Overview ................................................................................................................. 554 17.5.20.2. RPI Model ................................................................................................................ 555 17.5.20.3. Non-equilibrium Subcooled Boiling .......................................................................... 557 17.5.20.4. Critical Heat Flux ...................................................................................................... 558 17.5.20.4.1.Wall Heat Flux Partition .................................................................................... 558 17.5.20.4.2. Flow Regime Transition ................................................................................... 559 17.5.20.5. Interfacial Momentum Transfer ................................................................................. 560 17.5.20.5.1. Interfacial Area ................................................................................................ 560 17.5.20.5.2. Bubble and Droplet Diameters ........................................................................ 560 17.5.20.5.2.1. Bubble Diameter .................................................................................... 560 17.5.20.5.2.2. Droplet Diameter .................................................................................... 560 17.5.20.5.3. Interfacial Drag Force ...................................................................................... 561 17.5.20.5.4. Interfacial Lift Force ......................................................................................... 561 17.5.20.5.5.Turbulent Dispersion Force .............................................................................. 561 17.5.20.5.6. Wall Lubrication Force ..................................................................................... 561 17.5.20.5.7. Virtual Mass Force ........................................................................................... 561 17.5.20.6. Interfacial Heat Transfer ............................................................................................ 561 17.5.20.6.1. Interface to Liquid Heat Transfer ...................................................................... 561 17.5.20.6.2. Interface to Vapor Heat Transfer ....................................................................... 562 17.5.20.7. Mass Transfer ........................................................................................................... 562 17.5.20.7.1. Mass Transfer From the Wall to Vapor ............................................................... 562 xxi Release 16.0 - © SAS IP, Inc. All rights reserved. - Contains proprietary and confidential information of ANSYS, Inc. and its subsidiaries and affiliates. Theory Guide 17.5.20.7.2. Interfacial Mass Transfer .................................................................................. 562 17.5.20.8.Turbulence Interactions ............................................................................................ 562 17.6. Wet Steam Model Theory ............................................................................................................ 562 17.6.1. Overview of the Wet Steam Model ...................................................................................... 562 17.6.2. Limitations of the Wet Steam Model .................................................................................... 563 17.6.3.Wet Steam Flow Equations .................................................................................................. 563 17.6.4. Phase Change Model .......................................................................................................... 564 17.6.5. Built-in Thermodynamic Wet Steam Properties .................................................................... 566 17.6.5.1. Equation of State ....................................................................................................... 566 17.6.5.2. Saturated Vapor Line .................................................................................................. 567 17.6.5.3. Saturated Liquid Line ................................................................................................. 567 17.6.5.4. Mixture Properties ..................................................................................................... 567 17.7. Modeling Mass Transfer in Multiphase Flows ................................................................................ 567 17.7.1. Source Terms due to Mass Transfer ...................................................................................... 568 17.7.1.1. Mass Equation ........................................................................................................... 568 17.7.1.2. Momentum Equation ................................................................................................. 568 17.7.1.3. Energy Equation ........................................................................................................ 568 17.7.1.4. Species Equation ....................................................................................................... 569 17.7.1.5. Other Scalar Equations ............................................................................................... 569 17.7.2. Unidirectional Constant Rate Mass Transfer ......................................................................... 569 17.7.3. UDF-Prescribed Mass Transfer ............................................................................................. 569 17.7.4. Cavitation Models .............................................................................................................. 569 17.7.4.1. Limitations of the Cavitation Models .......................................................................... 570 17.7.4.2.Vapor Transport Equation ........................................................................................... 571 17.7.4.3. Bubble Dynamics Consideration ................................................................................ 571 17.7.4.4. Singhal et al. Model .................................................................................................... 572 17.7.4.5. Zwart-Gerber-Belamri Model ..................................................................................... 574 17.7.4.6. Schnerr and Sauer Model ........................................................................................... 575 17.7.4.7. Turbulence Factor ...................................................................................................... 576 17.7.4.8. Additional Guidelines for the Cavitation Models ......................................................... 576 17.7.4.9. Extended Cavitation Model Capabilities ..................................................................... 578 17.7.4.9.1. Multiphase Cavitation Models ........................................................................... 578 17.7.4.9.2. Multiphase Species Transport Cavitation Model ................................................. 579 17.7.5. Evaporation-Condensation Model ....................................................................................... 579 17.7.5.1. Lee Model ................................................................................................................. 579 17.7.5.2.Thermal Phase Change Model .................................................................................... 582 17.7.6. Interphase Species Mass Transfer ........................................................................................ 583 17.7.6.1. Modeling Approach ................................................................................................... 584 17.7.6.1.1. Equilibrium Model ............................................................................................. 584 17.7.6.1.2.Two-Resistance Model ....................................................................................... 585 17.7.6.2. Species Mass Transfer Models ..................................................................................... 587 17.7.6.2.1. Raoult’s Law ...................................................................................................... 587 17.7.6.2.2. Henry’s Law ...................................................................................................... 587 17.7.6.2.3. Equilibrium Ratio .............................................................................................. 588 17.7.6.3. Mass Transfer Coefficient Models ................................................................................ 589 17.7.6.3.1. Constant ........................................................................................................... 589 17.7.6.3.2. Sherwood Number ............................................................................................ 589 17.7.6.3.3. Ranz-Marshall Model ......................................................................................... 589 17.7.6.3.4. Hughmark Model .............................................................................................. 590 17.7.6.3.5. User-Defined ..................................................................................................... 590 17.8. Modeling Species Transport in Multiphase Flows ......................................................................... 590 17.8.1. Limitations ......................................................................................................................... 591 Release 16.0 - © SAS IP, Inc. All rights reserved. - Contains proprietary and confidential information xxii of ANSYS, Inc. and its subsidiaries and affiliates. Theory Guide 17.8.2. Mass and Momentum Transfer with Multiphase Species Transport ....................................... 591 17.8.2.1. Source Terms Due to Heterogeneous Reactions .......................................................... 592 17.8.2.1.1. Mass Transfer .................................................................................................... 592 17.8.2.1.2. Momentum Transfer .......................................................................................... 592 17.8.2.1.3. Species Transfer ................................................................................................ 593 17.8.2.1.4. Heat Transfer ..................................................................................................... 593 17.8.3. The Stiff Chemistry Solver ................................................................................................... 594 17.8.4. Heterogeneous Phase Interaction ....................................................................................... 594 18. Solidification and Melting ................................................................................................................. 595 18.1. Overview .................................................................................................................................... 595 18.2. Limitations .................................................................................................................................. 596 18.3. Introduction ............................................................................................................................... 596 18.4. Energy Equation ......................................................................................................................... 596 18.5. Momentum Equations ................................................................................................................ 597 18.6.Turbulence Equations .................................................................................................................. 598 18.7. Species Equations ....................................................................................................................... 598 18.8. Back Diffusion ............................................................................................................................. 600 18.9. Pull Velocity for Continuous Casting ............................................................................................ 600 18.10. Contact Resistance at Walls ........................................................................................................ 602 18.11.Thermal and Solutal Buoyancy ................................................................................................... 602 19. Eulerian Wall Films ............................................................................................................................ 605 19.1. Introduction ............................................................................................................................... 605 19.2. Mass, Momentum, and Energy Conservation Equations for Wall Film ............................................. 606 19.2.1. Film Sub-Models ................................................................................................................. 607 19.2.1.1. DPM Collection .......................................................................................................... 607 19.2.1.2. Splashing .................................................................................................................. 607 19.2.1.3. Film Separation .......................................................................................................... 607 19.2.1.3.1. Separation Criteria ............................................................................................ 607 19.2.1.3.1.1. Foucart Separation ................................................................................... 608 19.2.1.3.1.2. O’Rourke Separation ................................................................................. 608 19.2.1.3.1.3. Friedrich Separation ................................................................................. 608 19.2.1.4. Film Stripping ............................................................................................................ 609 19.2.1.5. Secondary Phase Accretion ........................................................................................ 610 19.2.1.6. Coupling of Wall Film with Mixture Species Transport ................................................. 611 19.2.2. Boundary Conditions .......................................................................................................... 611 19.2.3. Obtaining Film Velocity Without Solving the Momentum Equations .................................... 611 19.2.3.1. Shear-Driven Film Velocity ......................................................................................... 612 19.2.3.2. Gravity-Driven Film Velocity ....................................................................................... 612 19.3. Passive Scalar Equation for Wall Film ............................................................................................ 613 19.4. Numerical Schemes and Solution Algorithm ................................................................................ 614 19.4.1.Temporal Differencing Schemes .......................................................................................... 614 19.4.1.1. First-Order Explicit Method ........................................................................................ 614 19.4.1.2. First-Order Implicit Method ........................................................................................ 615 19.4.1.3. Second-Order Implicit Method ................................................................................... 615 19.4.2. Spatial Differencing Schemes .............................................................................................. 616 19.4.3. Solution Algorithm ............................................................................................................. 617 19.4.3.1. Steady Flow ............................................................................................................... 617 19.4.3.2. Transient Flow ........................................................................................................... 617 20. Solver Theory .................................................................................................................................... 619 20.1. Overview of Flow Solvers ............................................................................................................ 619 20.1.1. Pressure-Based Solver ......................................................................................................... 620 20.1.1.1. The Pressure-Based Segregated Algorithm ................................................................. 620 xxiii Release 16.0 - © SAS IP, Inc. All rights reserved. - Contains proprietary and confidential information of ANSYS, Inc. and its subsidiaries and affiliates. Theory Guide 20.1.1.2.The Pressure-Based Coupled Algorithm ...................................................................... 621 20.1.2. Density-Based Solver .......................................................................................................... 622 20.2. General Scalar Transport Equation: Discretization and Solution ..................................................... 624 20.2.1. Solving the Linear System ................................................................................................... 626 20.3. Discretization .............................................................................................................................. 626 20.3.1. Spatial Discretization .......................................................................................................... 626 20.3.1.1. First-Order Upwind Scheme ....................................................................................... 627 20.3.1.2. Power-Law Scheme .................................................................................................... 627 20.3.1.3. Second-Order Upwind Scheme .................................................................................. 628 20.3.1.4. First-to-Higher Order Blending ................................................................................... 629 20.3.1.5. Central-Differencing Scheme ..................................................................................... 629 20.3.1.6. Bounded Central Differencing Scheme ....................................................................... 630 20.3.1.7. QUICK Scheme .......................................................................................................... 630 20.3.1.8.Third-Order MUSCL Scheme ....................................................................................... 631 20.3.1.9. Modified HRIC Scheme .............................................................................................. 631 20.3.1.10. High Order Term Relaxation ..................................................................................... 633 20.3.2. Temporal Discretization ...................................................................................................... 633 20.3.2.1. Implicit Time Integration ............................................................................................ 634 20.3.2.2. Bounded Second Order Implicit Time Integration ....................................................... 634 20.3.2.2.1. Limitations ........................................................................................................ 634 20.3.2.3. Explicit Time Integration ............................................................................................ 635 20.3.3. Evaluation of Gradients and Derivatives .............................................................................. 635 20.3.3.1. Green-Gauss Theorem ............................................................................................... 635 20.3.3.2. Green-Gauss Cell-Based Gradient Evaluation .............................................................. 636 20.3.3.3. Green-Gauss Node-Based Gradient Evaluation ............................................................ 636 20.3.3.4. Least Squares Cell-Based Gradient Evaluation ............................................................. 636 20.3.4. Gradient Limiters ................................................................................................................ 638 20.3.4.1. Standard Limiter ........................................................................................................ 638 20.3.4.2. Multidimensional Limiter ........................................................................................... 639 20.3.4.3. Differentiable Limiter ................................................................................................. 639 20.4. Pressure-Based Solver ................................................................................................................. 639 20.4.1. Discretization of the Momentum Equation .......................................................................... 640 20.4.1.1. Pressure Interpolation Schemes ................................................................................. 640 20.4.2. Discretization of the Continuity Equation ............................................................................ 641 20.4.2.1. Density Interpolation Schemes ................................................................................... 642 20.4.3. Pressure-Velocity Coupling ................................................................................................. 642 20.4.3.1. Segregated Algorithms .............................................................................................. 643 20.4.3.1.1. SIMPLE .............................................................................................................. 643 20.4.3.1.2. SIMPLEC ........................................................................................................... 644 20.4.3.1.2.1. Skewness Correction ................................................................................ 644 20.4.3.1.3. PISO .................................................................................................................. 644 20.4.3.1.3.1. Neighbor Correction ................................................................................. 644 20.4.3.1.3.2. Skewness Correction ................................................................................ 645 20.4.3.1.3.3. Skewness - Neighbor Coupling ................................................................. 645 20.4.3.2. Fractional-Step Method (FSM) .................................................................................... 645 20.4.3.3. Coupled Algorithm .................................................................................................... 645 20.4.3.3.1. Limitations ........................................................................................................ 646 20.4.4. Steady-State Iterative Algorithm ......................................................................................... 647 20.4.4.1. Under-Relaxation of Variables .................................................................................... 647 20.4.4.2. Under-Relaxation of Equations ................................................................................... 647 20.4.5.Time-Advancement Algorithm ............................................................................................ 647 20.4.5.1. Iterative Time-Advancement Scheme ......................................................................... 648 Release 16.0 - © SAS IP, Inc. All rights reserved. - Contains proprietary and confidential information xxiv of ANSYS, Inc. and its subsidiaries and affiliates. Theory Guide 20.4.5.1.1.The Frozen Flux Formulation .............................................................................. 649 20.4.5.2. Non-Iterative Time-Advancement Scheme .................................................................. 650 20.5. Density-Based Solver ................................................................................................................... 652 20.5.1. Governing Equations in Vector Form ................................................................................... 652 20.5.2. Preconditioning ................................................................................................................. 653 20.5.3. Convective Fluxes ............................................................................................................... 655 20.5.3.1. Roe Flux-Difference Splitting Scheme ......................................................................... 655 20.5.3.2. AUSM Scheme ......................................................................................................... 655 20.5.3.3. Low Diffusion Roe Flux Difference Splitting Scheme ................................................... 656 20.5.4. Steady-State Flow Solution Methods ................................................................................... 656 20.5.4.1. Explicit Formulation ................................................................................................... 657 20.5.4.1.1. Implicit Residual Smoothing .............................................................................. 657 20.5.4.2. Implicit Formulation .................................................................................................. 658 20.5.4.2.1. Convergence Acceleration for Stretched Meshes ................................................ 658 20.5.5. Unsteady Flows Solution Methods ...................................................................................... 659 20.5.5.1. Explicit Time Stepping ............................................................................................... 659 20.5.5.2. Implicit Time Stepping (Dual-Time Formulation) ......................................................... 659 20.6. Pseudo Transient Under-Relaxation ............................................................................................. 661 20.6.1. Automatic Pseudo Transient Time Step ............................................................................... 661 20.7. Multigrid Method ........................................................................................................................ 663 20.7.1. Approach ........................................................................................................................... 663 20.7.1.1.The Need for Multigrid ............................................................................................... 663 20.7.1.2.The Basic Concept in Multigrid ................................................................................... 664 20.7.1.3. Restriction and Prolongation ...................................................................................... 664 20.7.1.4. Unstructured Multigrid .............................................................................................. 665 20.7.2. Multigrid Cycles .................................................................................................................. 665 20.7.2.1. The V and W Cycles .................................................................................................... 665 20.7.3. Algebraic Multigrid (AMG) .................................................................................................. 669 20.7.3.1. AMG Restriction and Prolongation Operators ............................................................. 669 20.7.3.2. AMG Coarse Level Operator ....................................................................................... 670 20.7.3.3. The F Cycle ................................................................................................................ 670 20.7.3.4. The Flexible Cycle ...................................................................................................... 670 20.7.3.4.1.The Residual Reduction Rate Criteria .................................................................. 671 20.7.3.4.2. The Termination Criteria .................................................................................... 672 20.7.3.5.The Coupled and Scalar AMG Solvers .......................................................................... 672 20.7.3.5.1. Gauss-Seidel ..................................................................................................... 673 20.7.3.5.2. Incomplete Lower Upper (ILU) ........................................................................... 673 20.7.4. Full-Approximation Storage (FAS) Multigrid ......................................................................... 674 20.7.4.1. FAS Restriction and Prolongation Operators ............................................................... 675 20.7.4.2. FAS Coarse Level Operator ......................................................................................... 675 20.8. Hybrid Initialization ..................................................................................................................... 675 20.9. Full Multigrid (FMG) Initialization ................................................................................................. 677 20.9.1. Overview of FMG Initialization ............................................................................................ 677 20.9.2. Limitations of FMG Initialization .......................................................................................... 678 21. Adapting the Mesh ............................................................................................................................ 681 21.1. Static Adaption Process ............................................................................................................... 681 21.1.1. Hanging Node Adaption ..................................................................................................... 681 21.1.1.1. Hanging Node Refinement ......................................................................................... 682 21.1.1.2. Hanging Node Coarsening ......................................................................................... 683 21.2. Boundary Adaption ..................................................................................................................... 683 21.3. Gradient Adaption ...................................................................................................................... 685 21.3.1. Gradient Adaption Approach .............................................................................................. 685 xxv Release 16.0 - © SAS IP, Inc. All rights reserved. - Contains proprietary and confidential information of ANSYS, Inc. and its subsidiaries and affiliates. Theory Guide 21.3.2. Example of Steady Gradient Adaption ................................................................................. 687 21.4. Isovalue Adaption ....................................................................................................................... 689 21.5. Region Adaption ......................................................................................................................... 691 21.5.1. Defining a Region ............................................................................................................... 691 21.5.2. Region Adaption Example .................................................................................................. 692 21.6. Volume Adaption ........................................................................................................................ 693 21.6.1.Volume Adaption Approach ................................................................................................ 693 21.6.2.Volume Adaption Example .................................................................................................. 694 21.7.Yplus/Ystar Adaption ................................................................................................................... 695 21.7.1.Yplus/Ystar Adaption Approach .......................................................................................... 695 21.8. Anisotropic Adaption .................................................................................................................. 697 21.9. Geometry-Based Adaption .......................................................................................................... 697 21.9.1. Geometry-Based Adaption Approach .................................................................................. 698 21.9.1.1. Node Projection ......................................................................................................... 698 21.9.1.2. Example of Geometry-Based Adaption ....................................................................... 700 21.10. Registers ................................................................................................................................... 703 21.10.1. Adaption Registers ........................................................................................................... 703 21.10.2. Mask Registers .................................................................................................................. 704 22. Reporting Alphanumeric Data .......................................................................................................... 707 22.1. Fluxes Through Boundaries ......................................................................................................... 707 22.2. Forces on Boundaries .................................................................................................................. 708 22.2.1. Computing Forces, Moments, and the Center of Pressure ..................................................... 708 22.3. Surface Integration ..................................................................................................................... 710 22.3.1. Computing Surface Integrals .............................................................................................. 711 22.3.1.1. Area .......................................................................................................................... 711 22.3.1.2. Integral ...................................................................................................................... 712 22.3.1.3. Area-Weighted Average ............................................................................................. 712 22.3.1.4. Custom Vector Based Flux .......................................................................................... 712 22.3.1.5. Custom Vector Flux .................................................................................................... 712 22.3.1.6. Custom Vector Weighted Average .............................................................................. 712 22.3.1.7. Flow Rate ................................................................................................................... 712 22.3.1.8. Mass Flow Rate .......................................................................................................... 713 22.3.1.9. Mass-Weighted Average ............................................................................................ 713 22.3.1.10. Sum of Field Variable ................................................................................................ 713 22.3.1.11. Facet Average .......................................................................................................... 714 22.3.1.12. Facet Minimum ........................................................................................................ 714 22.3.1.13. Facet Maximum ....................................................................................................... 714 22.3.1.14.Vertex Average ......................................................................................................... 714 22.3.1.15. Vertex Minimum ...................................................................................................... 714 22.3.1.16.Vertex Maximum ...................................................................................................... 714 22.3.1.17. Standard-Deviation .................................................................................................. 714 22.3.1.18. Uniformity Index ...................................................................................................... 715 22.3.1.19. Volume Flow Rate .................................................................................................... 716 22.4. Volume Integration ..................................................................................................................... 716 22.4.1. Computing Volume Integrals .............................................................................................. 716 22.4.1.1.Volume ...................................................................................................................... 716 22.4.1.2. Sum .......................................................................................................................... 717 22.4.1.3. Sum*2Pi .................................................................................................................... 717 22.4.1.4. Volume Integral ......................................................................................................... 717 22.4.1.5.Volume-Weighted Average ......................................................................................... 717 22.4.1.6. Mass-Weighted Integral ............................................................................................. 717 22.4.1.7. Mass .......................................................................................................................... 718 Release 16.0 - © SAS IP, Inc. All rights reserved. - Contains proprietary and confidential information xxvi of ANSYS, Inc. and its subsidiaries and affiliates. Theory Guide 22.4.1.8. Mass-Weighted Average ............................................................................................ 718 A. Nomenclature ....................................................................................................................................... 719 Bibliography ............................................................................................................................................. 723 Index ........................................................................................................................................................ 753
好例子网口号:伸出你的我的手 — 分享!
小贴士
感谢您为本站写下的评论,您的评论对其它用户来说具有重要的参考价值,所以请认真填写。
- 类似“顶”、“沙发”之类没有营养的文字,对勤劳贡献的楼主来说是令人沮丧的反馈信息。
- 相信您也不想看到一排文字/表情墙,所以请不要反馈意义不大的重复字符,也请尽量不要纯表情的回复。
- 提问之前请再仔细看一遍楼主的说明,或许是您遗漏了。
- 请勿到处挖坑绊人、招贴广告。既占空间让人厌烦,又没人会搭理,于人于己都无利。
关于好例子网
本站旨在为广大IT学习爱好者提供一个非营利性互相学习交流分享平台。本站所有资源都可以被免费获取学习研究。本站资源来自网友分享,对搜索内容的合法性不具有预见性、识别性、控制性,仅供学习研究,请务必在下载后24小时内给予删除,不得用于其他任何用途,否则后果自负。基于互联网的特殊性,平台无法对用户传输的作品、信息、内容的权属或合法性、安全性、合规性、真实性、科学性、完整权、有效性等进行实质审查;无论平台是否已进行审查,用户均应自行承担因其传输的作品、信息、内容而可能或已经产生的侵权或权属纠纷等法律责任。本站所有资源不代表本站的观点或立场,基于网友分享,根据中国法律《信息网络传播权保护条例》第二十二与二十三条之规定,若资源存在侵权或相关问题请联系本站客服人员,点此联系我们。关于更多版权及免责申明参见 版权及免责申明
网友评论
我要评论