实例介绍
【实例截图】DAMA-DMBOK_Data Management Body of Knowledge, 2nd.pdf
【核心代码】
Contents Preface_________________________________________________________ 15 Chapter 1: Data Management_______________________________________ 17 1. Introduction ____________________________________________________________ 17 2. Essential Concepts _______________________________________________________ 18 2.1 Data ______________________________________________________________________ 18 2.2 Data and Information ________________________________________________________ 20 2.3 Data as an Organizational Asset _______________________________________________ 20 2.4 Data Management Principles __________________________________________________ 21 2.5 Data Management Challenges _________________________________________________ 23 2.6 Data Management Strategy ___________________________________________________ 31 3. Data Management Frameworks ____________________________________________ 33 3.1 Strategic Alignment Model ____________________________________________________ 33 3.2 The Amsterdam Information Model ____________________________________________ 34 3.3 The DAMA-DMBOK Framework _______________________________________________ 35 3.4 DMBOK Pyramid (Aiken) _____________________________________________________ 39 3.5 DAMA Data Management Framework Evolved ___________________________________ 40 4. DAMA and the DMBOK ___________________________________________________ 43 5. Works Cited / Recommended ______________________________________________ 46 Chapter 2: Data Handling Ethics ____________________________________ 49 1. Introduction ____________________________________________________________ 49 2. Business Drivers ________________________________________________________ 51 3. Essential Concepts _______________________________________________________ 52 3.1 Ethical Principles for Data ____________________________________________________ 52 3.2 Principles Behind Data Privacy Law ____________________________________________ 53 3.3 Online Data in an Ethical Context ______________________________________________ 56 3.4 Risks of Unethical Data Handling Practices ______________________________________ 56 3.5 Establishing an Ethical Data Culture ____________________________________________ 60 3.6 Data Ethics and Governance __________________________________________________ 64 4. Works Cited / Recommended ______________________________________________ 65 Chapter 3: Data Governance________________________________________ 67 1. Introduction ____________________________________________________________ 67 1.1 Business Drivers ____________________________________________________________ 70 1.2 Goals and Principles _________________________________________________________ 71 1.3 Essential Concepts __________________________________________________________ 72 2. Activities _______________________________________________________________ 79 2.1 Define Data Governance for the Organization ____________________________________ 79 2.2 Perform Readiness Assessment _______________________________________________ 79 2.3 Perform Discovery and Business Alignment _____________________________________ 80 2.4 Develop Organizational Touch Points ___________________________________________ 81 2.5 Develop Data Governance Strategy _____________________________________________ 82 2.6 Define the DG Operating Framework ___________________________________________ 82 2.7 Develop Goals, Principles, and Policies __________________________________________ 83 2.8 Underwrite Data Management Projects _________________________________________ 84 2.9 Engage Change Management __________________________________________________ 85 2 • DMBOK2 2.10 Engage in Issue Management ________________________________________________ 86 2.11 Assess Regulatory Compliance Requirements ___________________________________ 87 2.12 Implement Data Governance _________________________________________________ 88 2.13 Sponsor Data Standards and Procedures _______________________________________ 88 2.14 Develop a Business Glossary _________________________________________________ 90 2.15 Coordinate with Architecture Groups _________________________________________ 90 2.16 Sponsor Data Asset Valuation ________________________________________________ 91 2.17 Embed Data Governance ____________________________________________________ 91 3. Tools and Techniques____________________________________________________ 92 3.1 Online Presence / Websites ___________________________________________________ 92 3.2 Business Glossary ___________________________________________________________ 92 3.3 Workflow Tools ____________________________________________________________ 93 3.4 Document Management Tools _________________________________________________ 93 3.5 Data Governance Scorecards __________________________________________________ 93 4. Implementation Guidelines _______________________________________________ 93 4.1 Organization and Culture _____________________________________________________ 93 4.2 Adjustment and Communication ______________________________________________ 94 5. Metrics ________________________________________________________________ 94 6. Works Cited / Recommended _____________________________________________ 95 Chapter 4: Data Architecture_______________________________________ 97 1. Introduction ___________________________________________________________ 97 1.1 Business Drivers ____________________________________________________________ 99 1.2 Data Architecture Outcomes and Practices _____________________________________ 100 1.3 Essential Concepts _________________________________________________________ 101 2. Activities _____________________________________________________________ 109 2.1 Establish Data Architecture Practice __________________________________________ 110 2.2 Integrate with Enterprise Architecture ________________________________________ 115 3. Tools ________________________________________________________________ 115 3.1 Data Modeling Tools________________________________________________________ 115 3.2 Asset Management Software _________________________________________________ 115 3.3 Graphical Design Applications _______________________________________________ 115 4. Techniques ___________________________________________________________ 116 4.1 Lifecycle Projections _______________________________________________________ 116 4.2 Diagramming Clarity _______________________________________________________ 116 5. Implementation Guidelines ______________________________________________ 117 5.1 Readiness Assessment / Risk Assessment ______________________________________ 118 5.2 Organization and Cultural Change ____________________________________________ 119 6. Data Architecture Governance ___________________________________________ 119 6.1 Metrics ___________________________________________________________________ 120 7. Works Cited / Recommended ____________________________________________ 120 Chapter 5: Data Modeling and Design_______________________________ 123 1. Introduction __________________________________________________________ 123 1.1 Business Drivers ___________________________________________________________ 125 1.2 Goals and Principles ________________________________________________________ 125 1.3 Essential Concepts _________________________________________________________ 126 2. Activities _____________________________________________________________ 152 2.1 Plan for Data Modeling ______________________________________________________ 152 CONTENTS • 3 2.2 Build the Data Model _______________________________________________________ 153 2.3 Review the Data Models _____________________________________________________ 158 2.4 Maintain the Data Models ___________________________________________________ 159 3. Tools _________________________________________________________________ 159 3.1 Data Modeling Tools ________________________________________________________ 159 3.2 Lineage Tools _____________________________________________________________ 159 3.3 Data Profiling Tools ________________________________________________________ 160 3.4 Metadata Repositories ______________________________________________________ 160 3.5 Data Model Patterns ________________________________________________________ 160 3.6 Industry Data Models _______________________________________________________ 160 4. Best Practices __________________________________________________________ 161 4.1 Best Practices in Naming Conventions _________________________________________ 161 4.2 Best Practices in Database Design _____________________________________________ 161 5. Data Model Governance _________________________________________________ 162 5.1 Data Model and Design Quality Management ___________________________________ 162 5.2 Data Modeling Metrics ______________________________________________________ 164 6. Works Cited / Recommended _____________________________________________ 166 Chapter 6: Data Storage and Operations _____________________________ 169 1. Introduction ___________________________________________________________ 169 1.1 Business Drivers ___________________________________________________________ 171 1.2 Goals and Principles ________________________________________________________ 171 1.3 Essential Concepts _________________________________________________________ 172 2. Activities ______________________________________________________________ 193 2.1 Manage Database Technology ________________________________________________ 194 2.2 Manage Databases _________________________________________________________ 196 3. Tools _________________________________________________________________ 209 3.1 Data Modeling Tools ________________________________________________________ 209 3.2 Database Monitoring Tools __________________________________________________ 209 3.3 Database Management Tools _________________________________________________ 209 3.4 Developer Support Tools ____________________________________________________ 209 4. Techniques ____________________________________________________________ 210 4.1 Test in Lower Environments _________________________________________________ 210 4.2 Physical Naming Standards __________________________________________________ 210 4.3 Script Usage for All Changes _________________________________________________ 210 5. Implementation Guidelines _______________________________________________ 210 5.1 Readiness Assessment / Risk Assessment ______________________________________ 210 5.2 Organization and Cultural Change ____________________________________________ 211 6. Data Storage and Operations Governance ___________________________________ 212 6.1 Metrics ___________________________________________________________________ 212 6.2 Information Asset Tracking __________________________________________________ 213 6.3 Data Audits and Data Validation ______________________________________________ 213 7. Works Cited / Recommended _____________________________________________ 214 Chapter 7: Data Security__________________________________________ 217 1. Introduction ___________________________________________________________ 217 1.1 Business Drivers ___________________________________________________________ 220 1.2 Goals and Principles ________________________________________________________ 222 1.3 Essential Concepts _________________________________________________________ 223 4 • DMBOK2 2. Activities _____________________________________________________________ 245 2.1 Identify Data Security Requirements __________________________________________ 245 2.2 Define Data Security Policy __________________________________________________ 247 2.3 Define Data Security Standards _______________________________________________ 248 3. Tools ________________________________________________________________ 256 3.1 Anti-Virus Software / Security Software _______________________________________ 256 3.2 HTTPS ___________________________________________________________________ 256 3.3 Identity Management Technology ____________________________________________ 257 3.4 Intrusion Detection and Prevention Software ___________________________________ 257 3.5 Firewalls (Prevention) ______________________________________________________ 257 3.6 Metadata Tracking _________________________________________________________ 257 3.7 Data Masking/Encryption ___________________________________________________ 258 4. Techniques ___________________________________________________________ 258 4.1 CRUD Matrix Usage ________________________________________________________ 258 4.2 Immediate Security Patch Deployment ________________________________________ 258 4.3 Data Security Attributes in Metadata __________________________________________ 258 4.4 Metrics ___________________________________________________________________ 259 4.5 Security Needs in Project Requirements _______________________________________ 261 4.6 Efficient Search of Encrypted Data ____________________________________________ 262 4.7 Document Sanitization ______________________________________________________ 262 5. Implementation Guidelines ______________________________________________ 262 5.1 Readiness Assessment / Risk Assessment ______________________________________ 262 5.2 Organization and Cultural Change ____________________________________________ 263 5.3 Visibility into User Data Entitlement __________________________________________ 263 5.4 Data Security in an Outsourced World _________________________________________ 264 5.5 Data Security in Cloud Environments __________________________________________ 265 6. Data Security Governance _______________________________________________ 265 6.1 Data Security and Enterprise Architecture _____________________________________ 265 7. Works Cited / Recommended ____________________________________________ 266 Chapter 8: Data Integration and Interoperability______________________ 269 1. Introduction __________________________________________________________ 269 1.1 Business Drivers ___________________________________________________________ 270 1.2 Goals and Principles ________________________________________________________ 272 1.3 Essential Concepts _________________________________________________________ 273 2. Data Integration Activities _______________________________________________ 286 2.1 Plan and Analyze __________________________________________________________ 286 2.2 Design Data Integration Solutions ____________________________________________ 289 2.3 Develop Data Integration Solutions ___________________________________________ 291 2.4 Implement and Monitor _____________________________________________________ 293 3. Tools ________________________________________________________________ 294 3.1 Data Transformation Engine/ETL Tool ________________________________________ 294 3.2 Data Virtualization Server ___________________________________________________ 294 3.3 Enterprise Service Bus ______________________________________________________ 294 3.4 Business Rules Engine ______________________________________________________ 295 3.5 Data and Process Modeling Tools _____________________________________________ 295 3.6 Data Profiling Tool _________________________________________________________ 295 3.7 Metadata Repository _______________________________________________________ 296 4. Techniques ___________________________________________________________ 296 CONTENTS • 5 5. Implementation Guidelines _______________________________________________ 296 5.1 Readiness Assessment / Risk Assessment ______________________________________ 296 5.2 Organization and Cultural Change ____________________________________________ 297 6. DII Governance _________________________________________________________ 297 6.1 Data Sharing Agreements ___________________________________________________ 298 6.2 DII and Data Lineage _______________________________________________________ 298 6.3 Data Integration Metrics ____________________________________________________ 299 7. Works Cited / Recommended _____________________________________________ 299 Chapter 9: Document and Content Management_______________________ 303 1. Introduction ___________________________________________________________ 303 1.1 Business Drivers ___________________________________________________________ 305 1.2 Goals and Principles ________________________________________________________ 305 1.3 Essential Concepts _________________________________________________________ 307 2. Activities ______________________________________________________________ 323 2.1 Plan for Lifecycle Management _______________________________________________ 323 2.2 Manage the Lifecycle _______________________________________________________ 326 2.3 Publish and Deliver Content _________________________________________________ 329 3. Tools _________________________________________________________________ 330 3.1 Enterprise Content Management Systems ______________________________________ 330 3.2 Collaboration Tools ________________________________________________________ 333 3.3 Controlled Vocabulary and Metadata Tools _____________________________________ 333 3.4 Standard Markup and Exchange Formats ______________________________________ 333 3.5 E-discovery Technology _____________________________________________________ 336 4. Techniques ____________________________________________________________ 336 4.1 Litigation Response Playbook ________________________________________________ 336 4.2 Litigation Response Data Map ________________________________________________ 337 5. Implementation Guidelines _______________________________________________ 337 5.1 Readiness Assessment / Risk Assessment ______________________________________ 338 5.2 Organization and Cultural Change ____________________________________________ 339 6. Documents and Content Governance _______________________________________ 340 6.1 Information Governance Frameworks _________________________________________ 340 6.2 Proliferation of Information _________________________________________________ 342 6.3 Govern for Quality Content __________________________________________________ 342 6.4 Metrics ___________________________________________________________________ 343 7. Works Cited / Recommended _____________________________________________ 344 Chapter 10: Reference and Master Data _____________________________ 347 1. Introduction ___________________________________________________________ 347 1.1 Business Drivers ___________________________________________________________ 349 1.2 Goals and Principles ________________________________________________________ 349 1.3 Essential Concepts _________________________________________________________ 350 2. Activities ______________________________________________________________ 370 2.1 MDM Activities ____________________________________________________________ 371 2.2 Reference Data Activities ____________________________________________________ 373 3. Tools and Techniques ___________________________________________________ 375 4. Implementation Guidelines _______________________________________________ 375 4.1 Adhere to Master Data Architecture ___________________________________________ 376 4.2 Monitor Data Movement ____________________________________________________ 376 6 • DMBOK2 4.3 Manage Reference Data Change ______________________________________________ 376 4.4 Data Sharing Agreements ___________________________________________________ 377 5. Organization and Cultural Change ________________________________________ 378 6. Reference and Master Data Governance ____________________________________ 378 6.1 Metrics ___________________________________________________________________ 379 7. Works Cited / Recommended ____________________________________________ 379 Chapter 11: Data Warehousing and Business Intelligence_______________ 381 1. Introduction __________________________________________________________ 381 1.1 Business Drivers ___________________________________________________________ 383 1.2 Goals and Principles ________________________________________________________ 383 1.3 Essential Concepts _________________________________________________________ 384 2. Activities _____________________________________________________________ 394 2.1 Understand Requirements __________________________________________________ 394 2.2 Define and Maintain the DW/BI Architecture ___________________________________ 395 2.3 Develop the Data Warehouse and Data Marts ___________________________________ 396 2.4 Populate the Data Warehouse ________________________________________________ 397 2.5 Implement the Business Intelligence Portfolio __________________________________ 398 2.6 Maintain Data Products _____________________________________________________ 399 3. Tools ________________________________________________________________ 402 3.1 Metadata Repository _______________________________________________________ 402 3.2 Data Integration Tools ______________________________________________________ 403 3.3 Business Intelligence Tools Types ____________________________________________ 403 4. Techniques ___________________________________________________________ 407 4.1 Prototypes to Drive Requirements ____________________________________________ 407 4.2 Self-Service BI _____________________________________________________________ 408 4.3 Audit Data that can be Queried _______________________________________________ 408 5. Implementation Guidelines ______________________________________________ 408 5.1 Readiness Assessment / Risk Assessment ______________________________________ 408 5.2 Release Roadmap __________________________________________________________ 409 5.3 Configuration Management __________________________________________________ 409 5.4 Organization and Cultural Change ____________________________________________ 410 6. DW/BI Governance _____________________________________________________ 411 6.1 Enabling Business Acceptance _______________________________________________ 411 6.2 Customer / User Satisfaction _________________________________________________ 412 6.3 Service Level Agreements ___________________________________________________ 412 6.4 Reporting Strategy _________________________________________________________ 412 6.5 Metrics ___________________________________________________________________ 413 7. Works Cited / Recommended ____________________________________________ 414 Chapter 12: Metadata Management ________________________________ 417 1. Introduction __________________________________________________________ 417 1.1 Business Drivers ___________________________________________________________ 420 1.2 Goals and Principles ________________________________________________________ 420 1.3 Essential Concepts _________________________________________________________ 421 2. Activities _____________________________________________________________ 434 2.1 Define Metadata Strategy____________________________________________________ 434 2.2 Understand Metadata Requirements __________________________________________ 435 2.3 Define Metadata Architecture ________________________________________________ 436 CONTENTS • 7 2.4 Create and Maintain Metadata________________________________________________ 438 2.5 Query, Report, and Analyze Metadata __________________________________________ 440 3. Tools _________________________________________________________________ 440 3.1 Metadata Repository Management Tools _______________________________________ 440 4. Techniques ____________________________________________________________ 441 4.1 Data Lineage and Impact Analysis_____________________________________________ 441 4.2 Metadata for Big Data Ingest _________________________________________________ 443 5. Implementation Guidelines _______________________________________________ 444 5.1 Readiness Assessment / Risk Assessment ______________________________________ 444 5.2 Organizational and Cultural Change ___________________________________________ 445 6. Metadata Governance ___________________________________________________ 445 6.1 Process Controls ___________________________________________________________ 445 6.2 Documentation of Metadata Solutions _________________________________________ 446 6.3 Metadata Standards and Guidelines ___________________________________________ 446 6.4 Metrics ___________________________________________________________________ 447 7. Works Cited / Recommended _____________________________________________ 448 Chapter 13: Data Quality _________________________________________ 449 1. Introduction ___________________________________________________________ 449 1.1 Business Drivers ___________________________________________________________ 452 1.2 Goals and Principles ________________________________________________________ 452 1.3 Essential Concepts _________________________________________________________ 453 2. Activities ______________________________________________________________ 473 2.1 Define High Quality Data ____________________________________________________ 473 2.2 Define a Data Quality Strategy ________________________________________________ 474 2.3 Identify Critical Data and Business Rules _______________________________________ 474 2.4 Perform an Initial Data Quality Assessment _____________________________________ 475 2.5 Identify and Prioritize Potential Improvements _________________________________ 476 2.6 Define Goals for Data Quality Improvement ____________________________________ 477 2.7 Develop and Deploy Data Quality Operations ___________________________________ 477 3. Tools _________________________________________________________________ 484 3.1 Data Profiling Tools ________________________________________________________ 485 3.2 Data Querying Tools ________________________________________________________ 485 3.3 Modeling and ETL Tools _____________________________________________________ 485 3.4 Data Quality Rule Templates _________________________________________________ 485 3.5 Metadata Repositories ______________________________________________________ 485 4. Techniques ____________________________________________________________ 486 4.1 Preventive Actions _________________________________________________________ 486 4.2 Corrective Actions _________________________________________________________ 486 4.3 Quality Check and Audit Code Modules ________________________________________ 487 4.4 Effective Data Quality Metrics ________________________________________________ 487 4.5 Statistical Process Control ___________________________________________________ 488 4.6 Root Cause Analysis ________________________________________________________ 490 5. Implementation Guidelines _______________________________________________ 490 5.1 Readiness Assessment / Risk Assessment ______________________________________ 491 5.2 Organization and Cultural Change ____________________________________________ 492 6. Data Quality and Data Governance _________________________________________ 493 6.1 Data Quality Policy _________________________________________________________ 493 6.2 Metrics ___________________________________________________________________ 494 8 • DMBOK2 7. Works Cited / Recommended ____________________________________________ 494 Chapter 14: Big Data and Data Science ______________________________ 497 1. Introduction __________________________________________________________ 497 1.1 Business Drivers ___________________________________________________________ 498 1.2 Principles ________________________________________________________________ 500 1.3 Essential Concepts _________________________________________________________ 500 2. Activities _____________________________________________________________ 511 2.1 Define Big Data Strategy and Business Needs ___________________________________ 511 2.2 Choose Data Sources _______________________________________________________ 512 2.3 Acquire and Ingest Data Sources______________________________________________ 513 2.4 Develop Data Hypotheses and Methods ________________________________________ 514 2.5 Integrate / Align Data for Analysis ____________________________________________ 514 2.6 Explore Data Using Models __________________________________________________ 514 2.7 Deploy and Monitor ________________________________________________________ 516 3. Tools ________________________________________________________________ 517 3.1 MPP Shared-nothing Technologies and Architecture _____________________________ 518 3.2 Distributed File-based Databases _____________________________________________ 519 3.3 In-database Algorithms _____________________________________________________ 520 3.4 Big Data Cloud Solutions ____________________________________________________ 520 3.5 Statistical Computing and Graphical Languages _________________________________ 520 3.6 Data Visualization Tools ____________________________________________________ 520 4. Techniques ___________________________________________________________ 521 4.1 Analytic Modeling __________________________________________________________ 521 4.2 Big Data Modeling _________________________________________________________ 522 5. Implementation Guidelines ______________________________________________ 523 5.1 Strategy Alignment _________________________________________________________ 523 5.2 Readiness Assessment / Risk Assessment ______________________________________ 523 5.3 Organization and Cultural Change ____________________________________________ 524 6. Big Data and Data Science Governance _____________________________________ 525 6.1 Visualization Channels Management __________________________________________ 525 6.2 Data Science and Visualization Standards ______________________________________ 525 6.3 Data Security ______________________________________________________________ 526 6.4 Metadata _________________________________________________________________ 526 6.5 Data Quality ______________________________________________________________ 527 6.6 Metrics ___________________________________________________________________ 527 7. Works Cited / Recommended ____________________________________________ 528 Chapter 15: Data Management Maturity Assessment __________________ 531 1. Introduction __________________________________________________________ 531 1.1 Business Drivers ___________________________________________________________ 532 1.2 Goals and Principles ________________________________________________________ 534 1.3 Essential Concepts _________________________________________________________ 534 2. Activities _____________________________________________________________ 539 2.1 Plan Assessment Activities __________________________________________________ 540 2.2 Perform Maturity Assessment ________________________________________________ 542 2.3 Interpret Results __________________________________________________________ 543 2.4 Create a Targeted Program for Improvements __________________________________ 544 2.5 Re-assess Maturity _________________________________________________________ 545 CONTENTS • 9 3. Tools _________________________________________________________________ 545 4. Techniques ____________________________________________________________ 546 4.1 Selecting a DMM Framework _________________________________________________ 546 4.2 DAMA-DMBOK Framework Use ______________________________________________ 546 5. Guidelines for a DMMA __________________________________________________ 547 5.1 Readiness Assessment / Risk Assessment ______________________________________ 547 5.2 Organizational and Cultural Change ___________________________________________ 548 6. Maturity Management Governance ________________________________________ 548 6.1 DMMA Process Oversight ____________________________________________________ 548 6.2 Metrics ___________________________________________________________________ 548 7. Works Cited / Recommended _____________________________________________ 549 Chapter 16: Data Management Organization and Role Expectations_______ 551 1. Introduction ___________________________________________________________ 551 2. Understand Existing Organization and Cultural Norms ________________________ 551 3. Data Management Organizational Constructs ________________________________ 553 3.1 Decentralized Operating Model _______________________________________________ 553 3.2 Network Operating Model ___________________________________________________ 554 3.3 Centralized Operating Model _________________________________________________ 555 3.4 Hybrid Operating Model ____________________________________________________ 556 3.5 Federated Operating Model __________________________________________________ 557 3.6 Identifying the Best Model for an Organization __________________________________ 557 3.7 DMO Alternatives and Design Considerations ___________________________________ 558 4. Critical Success Factors __________________________________________________ 559 4.1 Executive Sponsorship ______________________________________________________ 559 4.2 Clear Vision _______________________________________________________________ 559 4.3 Proactive Change Management _______________________________________________ 559 4.4 Leadership Alignment ______________________________________________________ 560 4.5 Communication ____________________________________________________________ 560 4.6 Stakeholder Engagement ____________________________________________________ 560 4.7 Orientation and Training ____________________________________________________ 560 4.8 Adoption Measurement _____________________________________________________ 561 4.9 Adherence to Guiding Principles ______________________________________________ 561 4.10 Evolution Not Revolution __________________________________________________ 561 5. Build the Data Management Organization ___________________________________ 562 5.1 Identify Current Data Management Participants _________________________________ 562 5.2 Identify Committee Participants ______________________________________________ 562 5.3 Identify and Analyze Stakeholders ____________________________________________ 563 5.4 Involve the Stakeholders ____________________________________________________ 563 6. Interactions Between the DMO and Other Data-oriented Bodies ________________ 564 6.1 The Chief Data Officer_______________________________________________________ 564 6.2 Data Governance ___________________________________________________________ 565 6.3 Data Quality _______________________________________________________________ 566 6.4 Enterprise Architecture _____________________________________________________ 566 6.5 Managing a Global Organization ______________________________________________ 567 7. Data Management Roles _________________________________________________ 568 7.1 Organizational Roles _______________________________________________________ 568 7.2 Individual Roles ___________________________________________________________ 568 8. Works Cited / Recommended _____________________________________________ 571 10 • DMBOK2 Chapter 17: Data Management and Organizational Change Management __ 573 1. Introduction __________________________________________________________ 573 2. Laws of Change ________________________________________________________ 574 3. Not Managing a Change: Managing a Transition _____________________________ 575 4. Kotter’s Eight Errors of Change Management _______________________________ 577 4.1 Error #1: Allowing Too Much Complacency ____________________________________ 577 4.2 Error #2: Failing to Create a Sufficiently Powerful Guiding Coalition ________________ 578 4.3 Error #3: Underestimating the Power of Vision _________________________________ 578 4.4 Error #4: Under Communicating the Vision by a Factor of 10, 100, or 1000 __________ 579 4.5 Error #5: Permitting Obstacles to Block the Vision _______________________________ 580 4.6 Error #6: Failing to Create Short-Term Wins ___________________________________ 580 4.7 Error #7: Declaring Victory Too Soon _________________________________________ 581 4.8 Error # 8: Neglecting to Anchor Changes Firmly in the Corporate Culture____________ 581 5. Kotter’s Eight Stage Process for Major Change ______________________________ 582 5.1 Establishing a Sense of Urgency ______________________________________________ 583 5.2 The Guiding Coalition _______________________________________________________ 586 5.3 Developing a Vision and Strategy _____________________________________________ 590 5.4 Communicating the Change Vision ____________________________________________ 594 6. The Formula for Change _________________________________________________ 598 7. Diffusion of Innovations and Sustaining Change _____________________________ 599 7.1 The Challenges to be Overcome as Innovations Spread ___________________________ 601 7.2 Key Elements in the Diffusion of Innovation ____________________________________ 601 7.3 The Five Stages of Adoption _________________________________________________ 601 7.4 Factors Affecting Acceptance or Rejection of an Innovation or Change ______________ 602 8. Sustaining Change _____________________________________________________ 603 8.1 Sense of Urgency / Dissatisfaction ____________________________________________ 604 8.2 Framing the Vision _________________________________________________________ 604 8.3 The Guiding Coalition _______________________________________________________ 605 8.4 Relative Advantage and Observability _________________________________________ 605 9. Communicating Data Management Value __________________________________ 605 9.1 Communications Principles __________________________________________________ 605 9.2 Audience Evaluation and Preparation _________________________________________ 606 9.3 The Human Element ________________________________________________________ 607 9.4 Communication Plan _______________________________________________________ 608 9.5 Keep Communicating _______________________________________________________ 609 10. Works Cited / Recommended ___________________________________________ 609 Acknowledgements _____________________________________________ 611 Index_________________________________________________________ 615
标签: DAMA
小贴士
感谢您为本站写下的评论,您的评论对其它用户来说具有重要的参考价值,所以请认真填写。
- 类似“顶”、“沙发”之类没有营养的文字,对勤劳贡献的楼主来说是令人沮丧的反馈信息。
- 相信您也不想看到一排文字/表情墙,所以请不要反馈意义不大的重复字符,也请尽量不要纯表情的回复。
- 提问之前请再仔细看一遍楼主的说明,或许是您遗漏了。
- 请勿到处挖坑绊人、招贴广告。既占空间让人厌烦,又没人会搭理,于人于己都无利。
关于好例子网
本站旨在为广大IT学习爱好者提供一个非营利性互相学习交流分享平台。本站所有资源都可以被免费获取学习研究。本站资源来自网友分享,对搜索内容的合法性不具有预见性、识别性、控制性,仅供学习研究,请务必在下载后24小时内给予删除,不得用于其他任何用途,否则后果自负。基于互联网的特殊性,平台无法对用户传输的作品、信息、内容的权属或合法性、安全性、合规性、真实性、科学性、完整权、有效性等进行实质审查;无论平台是否已进行审查,用户均应自行承担因其传输的作品、信息、内容而可能或已经产生的侵权或权属纠纷等法律责任。本站所有资源不代表本站的观点或立场,基于网友分享,根据中国法律《信息网络传播权保护条例》第二十二与二十三条之规定,若资源存在侵权或相关问题请联系本站客服人员,点此联系我们。关于更多版权及免责申明参见 版权及免责申明
网友评论
我要评论