实例介绍
【实例截图】
【核心代码】
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 | Contents Preface vii Mathematical notation xi Contents xiii 1 Introduction 1 1.1 Example: Polynomial Curve Fitting . . . . ............. 4 1.2 Probability Theory . . . . . . . . . . . . . . . . . . . . . . . . . . 12 1.2.1 Probability densities . . . . . . . . . . . . . . . . . . . . . 17 1.2.2 Expectations and covariances . . . . . . . . . . . . . . . . 19 1.2.3 Bayesian probabilities . . . . . . . . . . . . . . . . . . . . 21 1.2.4 The Gaussian distribution . . . . . . . . . . . . . . . . . . 24 1.2.5 Curve fitting re-visited . . . . . . . . . . . . . . . . . . . . 28 1.2.6 Bayesian curve fitting . . . . . . . . . . . . . . . . . . . . 30 1.3 Model Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 1.4 The Curse of Dimensionality . . . . . . . . . . . . . . . . . . . . . 33 1.5 Decision Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 1.5.1 Minimizing the misclassification rate . . . . . . . . . . . . 39 1.5.2 Minimizing the expected loss . . . . . . . . . . . . . . . . 41 1.5.3 The reject option . . . . . . . . . . . . . . . . . . . . . . . 42 1.5.4 Inference and decision . . . . . . . . . . . . . . . . . . . . 42 1.5.5 Loss functions for regression . . . . . . . . . . . . . . . . . 46 1.6 Information Theory . . . . . . . . . . . . . . . . . . . . . . . . . . 48 1.6.1 Relative entropy and mutual information . . . . . . . . . . 55 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58 xiii xiv CONTENTS 2 Probability Distributions 67 2.1 Binary Variables . . . . . . . . . . . . . . . . . . . . . . . . . . . 68 2.1.1 The beta distribution . . . . . . . . . . . . . . . . . . . . . 71 2.2 Multinomial Variables . . . . . . . . . . . . . . . . . . . . . . . . 74 2.2.1 The Dirichlet distribution . . . . . . . . . . . . . . . . . . . 76 2.3 The Gaussian Distribution . . . . . . . . . . . . . . . . . . . . . . 78 2.3.1 Conditional Gaussian distributions . . . . . . . . . . . . . . 85 2.3.2 Marginal Gaussian distributions . . . . . . . . . . . . . . . 88 2.3.3 Bayes’ theorem for Gaussian variables . . . . . . . . . . . . 90 2.3.4 Maximum likelihood for the Gaussian . . . . . . . . . . . . 93 2.3.5 Sequential estimation . . . . . . . . . . . . . . . . . . . . . 94 2.3.6 Bayesian inference for the Gaussian . . . . . . . . . . . . . 97 2.3.7 Student’s t-distribution . . . . . . . . . . . . . . . . . . . . 102 2.3.8 Periodic variables . . . . . . . . . . . . . . . . . . . . . . . 105 2.3.9 Mixtures of Gaussians . . . . . . . . . . . . . . . . . . . . 110 2.4 The Exponential Family . . . . . . . . . . . . . . . . . . . . . . . 113 2.4.1 Maximum likelihood and sufficient statistics . . . . . . . . 116 2.4.2 Conjugate priors . . . . . . . . . . . . . . . . . . . . . . . 117 2.4.3 Noninformative priors . . . . . . . . . . . . . . . . . . . . 117 2.5 Nonparametric Methods . . . . . . . . . . . . . . . . . . . . . . . 120 2.5.1 Kernel density estimators . . . . . . . . . . . . . . . . . . . 122 2.5.2 Nearest-neighbour methods . . . . . . . . . . . . . . . . . 124 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127 3 Linear Models for Regression 137 3.1 Linear Basis Function Models . . . . . . . . . . . . . . . . . . . . 138 3.1.1 Maximum likelihood and least squares . . . . . . . . . . . . 140 3.1.2 Geometry of least squares . . . . . . . . . . . . . . . . . . 143 3.1.3 Sequential learning . . . . . . . . . . . . . . . . . . . . . . 143 3.1.4 Regularized least squares . . . . . . . . . . . . . . . . . . . 144 3.1.5 Multiple outputs . . . . . . . . . . . . . . . . . . . . . . . 146 3.2 The Bias-Variance Decomposition . . . . . . . . . . . . . . . . . . 147 3.3 Bayesian Linear Regression . . . . . . . . . . . . . . . . . . . . . 152 3.3.1 Parameter distribution . . . . . . . . . . . . . . . . . . . . 152 3.3.2 Predictive distribution . . . . . . . . . . . . . . . . . . . . 156 3.3.3 Equivalent kernel . . . . . . . . . . . . . . . . . . . . . . . 159 3.4 Bayesian Model Comparison . . . . . . . . . . . . . . . . . . . . . 161 3.5 The Evidence Approximation . . . . . . . . . . . . . . . . . . . . 165 3.5.1 Evaluation of the evidence function . . . . . . . . . . . . . 166 3.5.2 Maximizing the evidence function . . . . . . . . . . . . . . 168 3.5.3 Effective number of parameters . . . . . . . . . . . . . . . 170 3.6 Limitations of Fixed Basis Functions . . . . . . . . . . . . . . . . 172 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173 CONTENTS xv 4 Linear Models for Classification 179 4.1 Discriminant Functions . . . . . . . . . . . . . . . . . . . . . . . . 181 4.1.1 Two classes . . . . . . . . . . . . . . . . . . . . . . . . . . 181 4.1.2 Multiple classes . . . . . . . . . . . . . . . . . . . . . . . . 182 4.1.3 Least squares for classification . . . . . . . . . . . . . . . . 184 4.1.4 Fisher’s linear discriminant . . . . . . . . . . . . . . . . . . 186 4.1.5 Relation to least squares . . . . . . . . . . . . . . . . . . . 189 4.1.6 Fisher’s discriminant for multiple classes . . . . . . . . . . 191 4.1.7 The perceptron algorithm . . . . . . . . . . . . . . . . . . . 192 4.2 Probabilistic Generative Models . . . . . . . . . . . . . . . . . . . 196 4.2.1 Continuous inputs . . . . . . . . . . . . . . . . . . . . . . 198 4.2.2 Maximum likelihood solution . . . . . . . . . . . . . . . . 200 4.2.3 Discrete features . . . . . . . . . . . . . . . . . . . . . . . 202 4.2.4 Exponential family . . . . . . . . . . . . . . . . . . . . . . 202 4.3 Probabilistic Discriminative Models . . . . . . . . . . . . . . . . . 203 4.3.1 Fixed basis functions . . . . . . . . . . . . . . . . . . . . . 204 4.3.2 Logistic regression . . . . . . . . . . . . . . . . . . . . . . 205 4.3.3 Iterative reweighted least squares . . . . . . . . . . . . . . 207 4.3.4 Multiclass logistic regression . . . . . . . . . . . . . . . . . 209 4.3.5 Probit regression . . . . . . . . . . . . . . . . . . . . . . . 210 4.3.6 Canonical link functions . . . . . . . . . . . . . . . . . . . 212 4.4 The Laplace Approximation . . . . . . . . . . . . . . . . . . . . . 213 4.4.1 Model comparison and BIC . . . . . . . . . . . . . . . . . 216 4.5 Bayesian Logistic Regression . . . . . . . . . . . . . . . . . . . . 217 4.5.1 Laplace approximation . . . . . . . . . . . . . . . . . . . . 217 4.5.2 Predictive distribution . . . . . . . . . . . . . . . . . . . . 218 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 220 5 Neural Networks 225 5.1 Feed-forward Network Functions . . . . . . . . . . . . . . . . . . 227 5.1.1 Weight-space symmetries . . . . . . . . . . . . . . . . . . 231 5.2 Network Training . . . . . . . . . . . . . . . . . . . . . . . . . . . 232 5.2.1 Parameter optimization . . . . . . . . . . . . . . . . . . . . 236 5.2.2 Local quadratic approximation . . . . . . . . . . . . . . . . 237 5.2.3 Use of gradient information . . . . . . . . . . . . . . . . . 239 5.2.4 Gradient descent optimization . . . . . . . . . . . . . . . . 240 5.3 Error Backpropagation . . . . . . . . . . . . . . . . . . . . . . . . 241 5.3.1 Evaluation of error-function derivatives . . . . . . . . . . . 242 5.3.2 A simple example . . . . . . . . . . . . . . . . . . . . . . 245 5.3.3 Efficiency of backpropagation . . . . . . . . . . . . . . . . 246 5.3.4 The Jacobian matrix . . . . . . . . . . . . . . . . . . . . . 247 5.4 The Hessian Matrix . . . . . . . . . . . . . . . . . . . . . . . . . . 249 5.4.1 Diagonal approximation . . . . . . . . . . . . . . . . . . . 250 5.4.2 Outer product approximation . . . . . . . . . . . . . . . . . 251 5.4.3 Inverse Hessian . . . . . . . . . . . . . . . . . . . . . . . . 252 xvi CONTENTS 5.4.4 Finite differences . . . . . . . . . . . . . . . . . . . . . . . 252 5.4.5 Exact evaluation of the Hessian . . . . . . . . . . . . . . . 253 5.4.6 Fast multiplication by the Hessian . . . . . . . . . . . . . . 254 5.5 Regularization in Neural Networks . . . . . . . . . . . . . . . . . 256 5.5.1 Consistent Gaussian priors . . . . . . . . . . . . . . . . . . 257 5.5.2 Early stopping . . . . . . . . . . . . . . . . . . . . . . . . 259 5.5.3 Invariances . . . . . . . . . . . . . . . . . . . . . . . . . . 261 5.5.4 Tangent propagation . . . . . . . . . . . . . . . . . . . . . 263 5.5.5 Training with transformed data . . . . . . . . . . . . . . . . 265 5.5.6 Convolutional networks . . . . . . . . . . . . . . . . . . . 267 5.5.7 Soft weight sharing . . . . . . . . . . . . . . . . . . . . . . 269 5.6 Mixture Density Networks . . . . . . . . . . . . . . . . . . . . . . 272 5.7 Bayesian Neural Networks . . . . . . . . . . . . . . . . . . . . . . 277 5.7.1 Posterior parameter distribution . . . . . . . . . . . . . . . 278 5.7.2 Hyperparameter optimization . . . . . . . . . . . . . . . . 280 5.7.3 Bayesian neural networks for classification . . . . . . . . . 281 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 284 6 Kernel Methods 291 6.1 Dual Representations . . . . . . . . . . . . . . . . . . . . . . . . . 293 6.2 Constructing Kernels . . . . . . . . . . . . . . . . . . . . . . . . . 294 6.3 Radial Basis Function Networks . . . . . . . . . . . . . . . . . . . 299 6.3.1 Nadaraya-Watson model . . . . . . . . . . . . . . . . . . . 301 6.4 Gaussian Processes . . . . . . . . . . . . . . . . . . . . . . . . . . 303 6.4.1 Linear regression revisited . . . . . . . . . . . . . . . . . . 304 6.4.2 Gaussian processes for regression . . . . . . . . . . . . . . 306 6.4.3 Learning the hyperparameters . . . . . . . . . . . . . . . . 311 6.4.4 Automatic relevance determination . . . . . . . . . . . . . 312 6.4.5 Gaussian processes for classification . . . . . . . . . . . . . 313 6.4.6 Laplace approximation . . . . . . . . . . . . . . . . . . . . 315 6.4.7 Connection to neural networks . . . . . . . . . . . . . . . . 319 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 320 7 Sparse Kernel Machines 325 7.1 Maximum Margin Classifiers . . . . . . . . . . . . . . . . . . . . 326 7.1.1 Overlapping class distributions . . . . . . . . . . . . . . . . 331 7.1.2 Relation to logistic regression . . . . . . . . . . . . . . . . 336 7.1.3 Multiclass SVMs . . . . . . . . . . . . . . . . . . . . . . . 338 7.1.4 SVMs for regression . . . . . . . . . . . . . . . . . . . . . 339 7.1.5 Computational learning theory . . . . . . . . . . . . . . . . 344 7.2 Relevance Vector Machines . . . . . . . . . . . . . . . . . . . . . 345 7.2.1 RVM for regression . . . . . . . . . . . . . . . . . . . . . . 345 7.2.2 Analysis of sparsity . . . . . . . . . . . . . . . . . . . . . . 349 7.2.3 RVM for classification . . . . . . . . . . . . . . . . . . . . 353 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 357 CONTENTS xvii 8 Graphical Models 359 8.1 Bayesian Networks . . . . . . . . . . . . . . . . . . . . . . . . . . 360 8.1.1 Example: Polynomial regression . . . . . . . . . . . . . . . 362 8.1.2 Generative models . . . . . . . . . . . . . . . . . . . . . . 365 8.1.3 Discrete variables . . . . . . . . . . . . . . . . . . . . . . . 366 8.1.4 Linear-Gaussian models . . . . . . . . . . . . . . . . . . . 370 8.2 Conditional Independence . . . . . . . . . . . . . . . . . . . . . . 372 8.2.1 Three example graphs . . . . . . . . . . . . . . . . . . . . 373 8.2.2 D-separation . . . . . . . . . . . . . . . . . . . . . . . . . 378 8.3 Markov Random Fields . . . . . . . . . . . . . . . . . . . . . . . 383 8.3.1 Conditional independence properties . . . . . . . . . . . . . 383 8.3.2 Factorization properties . . . . . . . . . . . . . . . . . . . 384 8.3.3 Illustration: Image de-noising . . . . . . . . . . . . . . . . 387 8.3.4 Relation to directed graphs . . . . . . . . . . . . . . . . . . 390 8.4 Inference in Graphical Models . . . . . . . . . . . . . . . . . . . . 393 8.4.1 Inference on a chain . . . . . . . . . . . . . . . . . . . . . 394 8.4.2 Trees . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 398 8.4.3 Factor graphs . . . . . . . . . . . . . . . . . . . . . . . . . 399 8.4.4 The sum-product algorithm . . . . . . . . . . . . . . . . . . 402 8.4.5 The max-sum algorithm . . . . . . . . . . . . . . . . . . . 411 8.4.6 Exact inference in general graphs . . . . . . . . . . . . . . 416 8.4.7 Loopy belief propagation . . . . . . . . . . . . . . . . . . . 417 8.4.8 Learning the graph structure . . . . . . . . . . . . . . . . . 418 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 418 9 Mixture Models and EM 423 9.1 K-means Clustering . . . . . . . . . . . . . . . . . . . . . . . . . 424 9.1.1 Image segmentation and compression . . . . . . . . . . . . 428 9.2 Mixtures of Gaussians . . . . . . . . . . . . . . . . . . . . . . . . 430 9.2.1 Maximum likelihood . . . . . . . . . . . . . . . . . . . . . 432 9.2.2 EM for Gaussian mixtures . . . . . . . . . . . . . . . . . . 435 9.3 An Alternative View of EM . . . . . . . . . . . . . . . . . . . . . 439 9.3.1 Gaussian mixtures revisited . . . . . . . . . . . . . . . . . 441 9.3.2 Relation to K-means . . . . . . . . . . . . . . . . . . . . . 443 9.3.3 Mixtures of Bernoulli distributions . . . . . . . . . . . . . . 444 9.3.4 EM for Bayesian linear regression . . . . . . . . . . . . . . 448 9.4 The EM Algorithm in General . . . . . . . . . . . . . . . . . . . . 450 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 455 10 Approximate Inference 461 10.1 Variational Inference . . . . . . . . . . . . . . . . . . . . . . . . . 462 10.1.1 Factorized distributions . . . . . . . . . . . . . . . . . . . . 464 10.1.2 Properties of factorized approximations . . . . . . . . . . . 466 10.1.3 Example: The univariate Gaussian . . . . . . . . . . . . . . 470 10.1.4 Model comparison . . . . . . . . . . . . . . . . . . . . . . 473 10.2 Illustration: Variational Mixture of Gaussians . . . . . . . . . . . . 474 xviii CONTENTS 10.2.1 Variational distribution . . . . . . . . . . . . . . . . . . . . 475 10.2.2 Variational lower bound . . . . . . . . . . . . . . . . . . . 481 10.2.3 Predictive density . . . . . . . . . . . . . . . . . . . . . . . 482 10.2.4 Determining the number of components . . . . . . . . . . . 483 10.2.5 Induced factorizations . . . . . . . . . . . . . . . . . . . . 485 10.3 Variational Linear Regression . . . . . . . . . . . . . . . . . . . . 486 10.3.1 Variational distribution . . . . . . . . . . . . . . . . . . . . 486 10.3.2 Predictive distribution . . . . . . . . . . . . . . . . . . . . 488 10.3.3 Lower bound . . . . . . . . . . . . . . . . . . . . . . . . . 489 10.4 Exponential Family Distributions . . . . . . . . . . . . . . . . . . 490 10.4.1 Variational message passing . . . . . . . . . . . . . . . . . 491 10.5 Local Variational Methods . . . . . . . . . . . . . . . . . . . . . . 493 10.6 Variational Logistic Regression . . . . . . . . . . . . . . . . . . . 498 10.6.1 Variational posterior distribution . . . . . . . . . . . . . . . 498 10.6.2 Optimizing the variational parameters . . . . . . . . . . . . 500 10.6.3 Inference of hyperparameters . . . . . . . . . . . . . . . . 502 10.7 Expectation Propagation . . . . . . . . . . . . . . . . . . . . . . . 505 10.7.1 Example: The clutter problem . . . . . . . . . . . . . . . . 511 10.7.2 Expectation propagation on graphs . . . . . . . . . . . . . . 513 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 517 11 Sampling Methods 523 11.1 Basic Sampling Algorithms . . . . . . . . . . . . . . . . . . . . . 526 11.1.1 Standard distributions . . . . . . . . . . . . . . . . . . . . 526 11.1.2 Rejection sampling . . . . . . . . . . . . . . . . . . . . . . 528 11.1.3 Adaptive rejection sampling . . . . . . . . . . . . . . . . . 530 11.1.4 Importance sampling . . . . . . . . . . . . . . . . . . . . . 532 11.1.5 Sampling-importance-resampling . . . . . . . . . . . . . . 534 11.1.6 Sampling and the EM algorithm . . . . . . . . . . . . . . . 536 11.2 Markov Chain Monte Carlo . . . . . . . . . . . . . . . . . . . . . 537 11.2.1 Markov chains . . . . . . . . . . . . . . . . . . . . . . . . 539 11.2.2 The Metropolis-Hastings algorithm . . . . . . . . . . . . . 541 11.3 Gibbs Sampling . . . . . . . . . . . . . . . . . . . . . . . . . . . 542 11.4 Slice Sampling . . . . . . . . . . . . . . . . . . . . . . . . . . . . 546 11.5 The Hybrid Monte Carlo Algorithm . . . . . . . . . . . . . . . . . 548 11.5.1 Dynamical systems . . . . . . . . . . . . . . . . . . . . . . 548 11.5.2 Hybrid Monte Carlo . . . . . . . . . . . . . . . . . . . . . 552 11.6 Estimating the Partition Function . . . . . . . . . . . . . . . . . . 554 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 556 12 Continuous Latent Variables 559 12.1 Principal Component Analysis . . . . . . . . . . . . . . . . . . . . 561 12.1.1 Maximum variance formulation . . . . . . . . . . . . . . . 561 12.1.2 Minimum-error formulation . . . . . . . . . . . . . . . . . 563 12.1.3 Applications of PCA . . . . . . . . . . . . . . . . . . . . . 565 12.1.4 PCA for high-dimensional data . . . . . . . . . . . . . . . 569 CONTENTS xix 12.2 Probabilistic PCA . . . . . . . . . . . . . . . . . . . . . . . . . . 570 12.2.1 Maximum likelihood PCA . . . . . . . . . . . . . . . . . . 574 12.2.2 EM algorithm for PCA . . . . . . . . . . . . . . . . . . . . 577 12.2.3 Bayesian PCA . . . . . . . . . . . . . . . . . . . . . . . . 580 12.2.4 Factor analysis . . . . . . . . . . . . . . . . . . . . . . . . 583 12.3 Kernel PCA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 586 12.4 Nonlinear Latent Variable Models . . . . . . . . . . . . . . . . . . 591 12.4.1 Independent component analysis . . . . . . . . . . . . . . . 591 12.4.2 Autoassociative neural networks . . . . . . . . . . . . . . . 592 12.4.3 Modelling nonlinear manifolds . . . . . . . . . . . . . . . . 595 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 599 13 Sequential Data 605 13.1 Markov Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . 607 13.2 Hidden Markov Models . . . . . . . . . . . . . . . . . . . . . . . 610 13.2.1 Maximum likelihood for the HMM . . . . . . . . . . . . . 615 13.2.2 The forward-backward algorithm . . . . . . . . . . . . . . 618 13.2.3 The sum-product algorithm for the HMM . . . . . . . . . . 625 13.2.4 Scaling factors . . . . . . . . . . . . . . . . . . . . . . . . 627 13.2.5 The Viterbi algorithm . . . . . . . . . . . . . . . . . . . . . 629 13.2.6 Extensions of the hidden Markov model . . . . . . . . . . . 631 13.3 Linear Dynamical Systems . . . . . . . . . . . . . . . . . . . . . . 635 13.3.1 Inference in LDS . . . . . . . . . . . . . . . . . . . . . . . 638 13.3.2 Learning in LDS . . . . . . . . . . . . . . . . . . . . . . . 642 13.3.3 Extensions of LDS . . . . . . . . . . . . . . . . . . . . . . 644 13.3.4 Particle filters . . . . . . . . . . . . . . . . . . . . . . . . . 645 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 646 14 Combining Models 653 14.1 Bayesian Model Averaging . . . . . . . . . . . . . . . . . . . . . . 654 14.2 Committees . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 655 14.3 Boosting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 657 14.3.1 Minimizing exponential error . . . . . . . . . . . . . . . . 659 14.3.2 Error functions for boosting . . . . . . . . . . . . . . . . . 661 14.4 Tree-based Models . . . . . . . . . . . . . . . . . . . . . . . . . . 663 14.5 Conditional Mixture Models . . . . . . . . . . . . . . . . . . . . . 666 14.5.1 Mixtures of linear regression models . . . . . . . . . . . . . 667 14.5.2 Mixtures of logistic models . . . . . . . . . . . . . . . . . 670 14.5.3 Mixtures of experts . . . . . . . . . . . . . . . . . . . . . . 672 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 674 Appendix A Data Sets 677 Appendix B Probability Distributions 685 Appendix C Properties of Matrices 695 xx CONTENTS Appendix D Calculus of Variations 703 Appendix E Lagrange Multipliers 707 References 711 Index 729 |
标签: 模式识别
小贴士
感谢您为本站写下的评论,您的评论对其它用户来说具有重要的参考价值,所以请认真填写。
- 类似“顶”、“沙发”之类没有营养的文字,对勤劳贡献的楼主来说是令人沮丧的反馈信息。
- 相信您也不想看到一排文字/表情墙,所以请不要反馈意义不大的重复字符,也请尽量不要纯表情的回复。
- 提问之前请再仔细看一遍楼主的说明,或许是您遗漏了。
- 请勿到处挖坑绊人、招贴广告。既占空间让人厌烦,又没人会搭理,于人于己都无利。
关于好例子网
本站旨在为广大IT学习爱好者提供一个非营利性互相学习交流分享平台。本站所有资源都可以被免费获取学习研究。本站资源来自网友分享,对搜索内容的合法性不具有预见性、识别性、控制性,仅供学习研究,请务必在下载后24小时内给予删除,不得用于其他任何用途,否则后果自负。基于互联网的特殊性,平台无法对用户传输的作品、信息、内容的权属或合法性、安全性、合规性、真实性、科学性、完整权、有效性等进行实质审查;无论平台是否已进行审查,用户均应自行承担因其传输的作品、信息、内容而可能或已经产生的侵权或权属纠纷等法律责任。本站所有资源不代表本站的观点或立场,基于网友分享,根据中国法律《信息网络传播权保护条例》第二十二与二十三条之规定,若资源存在侵权或相关问题请联系本站客服人员,点此联系我们。关于更多版权及免责申明参见 版权及免责申明
网友评论
我要评论