实例介绍
【实例简介】
【实例截图】
【实例截图】

【核心代码】
Contents I Artificial Intelligence 1 Introduction 1 1.1 What Is AI? 1 1.2 The Foundations of Artificial Intelligence 5 1.3 The History of Artificial Intelligence 17 1.4 The State of the Art 27 1.5 Risks and Benefits of AI 31 Summary 34 Bibliographical and Historical Notes 35 2 Intelligent Agents 36 2.1 Agents and Environments 36 2.2 Good Behavior: The Concept of Rationality 39 2.3 The Nature of Environments 42 2.4 The Structure of Agents 47 Summary 60 Bibliographical and Historical Notes 60 II Problem-solving 3 Solving Problems by Searching 63 3.1 Problem-Solving Agents 63 3.2 Example Problems 66 3.3 Search Algorithms 71 3.4 Uninformed Search Strategies 76 3.5 Informed (Heuristic) Search Strategies 84 3.6 Heuristic Functions 97 Summary 104 Bibliographical and Historical Notes 106 4 Search in Complex Environments 110 4.1 Local Search and Optimization Problems 110 4.2 Local Search in Continuous Spaces 119 4.3 Search with Nondeterministic Actions 122 4.4 Search in Partially Observable Environments 126 4.5 Online Search Agents and Unknown Environments 134 Summary 141 Bibliographical and Historical Notes 142 5 Adversarial Search and Games 146 5.1 Game Theory 146 5.2 Optimal Decisions in Games 148 5.3 Heuristic Alpha–Beta Tree Search 156 5.4 Monte Carlo Tree Search 161 5.5 Stochastic Games 164 5.6 Partially Observable Games 168 5.7 Limitations of Game Search Algorithms 173 Summary 174 Bibliographical and Historical Notes 175 6 Constraint Satisfaction Problems 180 6.1 Defining Constraint Satisfaction Problems 180 6.2 Constraint Propagation: Inference in CSPs 185 6.3 Backtracking Search for CSPs 1916.4 Local Search for CSPs 197 6.5 The Structure of Problems 199 Summary 203 Bibliographical and Historical Notes 204 III Knowledge, reasoning, and planning 7 Logical Agents 208 7.1 Knowledge-Based Agents 209 7.2 The Wumpus World 210 7.3 Logic 214 7.4 Propositional Logic: A Very Simple Logic 217 7.5 Propositional Theorem Proving 222 7.6 Effective Propositional Model Checking 232 7.7 Agents Based on Propositional Logic 237 Summary 246 Bibliographical and Historical Notes 247 8 First-Order Logic 251 8.1 Representation Revisited 251 8.2 Syntax and Semantics of First-Order Logic 256 8.3 Using First-Order Logic 265 8.4 Knowledge Engineering in First-Order Logic 271 Summary 277 Bibliographical and Historical Notes 278 9 Inference in First-Order Logic 280 9.1 Propositional vs. First-Order Inference 280 9.2 Unification and First-Order Inference 2829.3 Forward Chaining 286 9.4 Backward Chaining 293 9.5 Resolution 298 Summary 309 Bibliographical and Historical Notes 310 10 Knowledge Representation 314 10.1 Ontological Engineering 314 10.2 Categories and Objects 317 10.3 Events 322 10.4 Mental Objects and Modal Logic 326 10.5 Reasoning Systems for Categories 329 10.6 Reasoning with Default Information 333 Summary 337 Bibliographical and Historical Notes 338 11 Automated Planning 344 11.1 Definition of Classical Planning 344 11.2 Algorithms for Classical Planning 348 11.3 Heuristics for Planning 353 11.4 Hierarchical Planning 356 11.5 Planning and Acting in Nondeterministic Domains 365 11.6 Time, Schedules, and Resources 374 11.7 Analysis of Planning Approaches 378 Summary 379 Bibliographical and Historical Notes 380 IV Uncertain knowledge and reasoning 12 Quantifying Uncertainty 385 12.1 Acting under Uncertainty 385 12.2 Basic Probability Notation 388 12.3 Inference Using Full Joint Distributions 395 12.4 Independence 397 12.5 Bayes’ Rule and Its Use 399 12.6 Naive Bayes Models 402 12.7 The Wumpus World Revisited 404 Summary 407 Bibliographical and Historical Notes 408 13 Probabilistic Reasoning 412 13.1 Representing Knowledge in an Uncertain Domain 412 13.2 The Semantics of Bayesian Networks 414 13.3 Exact Inference in Bayesian Networks 427 13.4 Approximate Inference for Bayesian Networks 435 13.5 Causal Networks 449 Summary 453 Bibliographical and Historical Notes 454 14 Probabilistic Reasoning over Time 461 14.1 Time and Uncertainty 461 14.2 Inference in Temporal Models 465 14.3 Hidden Markov Models 473 14.4 Kalman Filters 479 14.5 Dynamic Bayesian Networks 485Summary 496 Bibliographical and Historical Notes 497 15 Probabilistic Programming 500 15.1 Relational Probability Models 501 15.2 Open-Universe Probability Models 507 15.3 Keeping Track of a Complex World 514 15.4 Programs as Probability Models 519 Summary 523 Bibliographical and Historical Notes 524 16 Making Simple Decisions 528 16.1 Combining Beliefs and Desires under Uncertainty 528 16.2 The Basis of Utility Theory 529 16.3 Utility Functions 532 16.4 Multiattribute Utility Functions 540 16.5 Decision Networks 544 16.6 The Value of Information 547 16.7 Unknown Preferences 553 Summary 557 Bibliographical and Historical Notes 557 17 Making Complex Decisions 562 17.1 Sequential Decision Problems 562 17.2 Algorithms for MDPs 572 17.3 Bandit Problems 581 17.4 Partially Observable MDPs 588 17.5 Algorithms for Solving POMDPs 590Summary 595 Bibliographical and Historical Notes 596 18 Multiagent Decision Making 599 18.1 Properties of Multiagent Environments 599 18.2 Non-Cooperative Game Theory 605 18.3 Cooperative Game Theory 626 18.4 Making Collective Decisions 632 Summary 645 Bibliographical and Historical Notes 646 V Machine Learning 19 Learning from Examples 651 19.1 Forms of Learning 651 19.2 Supervised Learning 653 19.3 Learning Decision Trees 657 19.4 Model Selection and Optimization 665 19.5 The Theory of Learning 672 19.6 Linear Regression and Classification 676 19.7 Nonparametric Models 686 19.8 Ensemble Learning 696 19.9 Developing Machine Learning Systems 704 Summary 714 Bibliographical and Historical Notes 715 20 Learning Probabilistic Models 721 20.1 Statistical Learning 721 20.2 Learning with Complete Data 72420.3 Learning with Hidden Variables: The EM Algorithm 737 Summary 746 Bibliographical and Historical Notes 747 21 Deep Learning 750 21.1 Simple Feedforward Networks 751 21.2 Computation Graphs for Deep Learning 756 21.3 Convolutional Networks 760 21.4 Learning Algorithms 765 21.5 Generalization 768 21.6 Recurrent Neural Networks 772 21.7 Unsupervised Learning and Transfer Learning 775 21.8 Applications 782 Summary 784 Bibliographical and Historical Notes 785 22 Reinforcement Learning 789 22.1 Learning from Rewards 789 22.2 Passive Reinforcement Learning 791 22.3 Active Reinforcement Learning 797 22.4 Generalization in Reinforcement Learning 803 22.5 Policy Search 810 22.6 Apprenticeship and Inverse Reinforcement Learning 812 22.7 Applications of Reinforcement Learning 815 Summary 818 Bibliographical and Historical Notes 819 VI Communicating, perceiving, and acting 23 Natural Language Processing 823 23.1 Language Models 823 23.2 Grammar 833 23.3 Parsing 835 23.4 Augmented Grammars 841 23.5 Complications of Real Natural Language 845 23.6 Natural Language Tasks 849 Summary 850 Bibliographical and Historical Notes 851 24 Deep Learning for Natural Language Processing 856 24.1 Word Embeddings 856 24.2 Recurrent Neural Networks for NLP 860 24.3 Sequence-to-Sequence Models 864 24.4 The Transformer Architecture 868 24.5 Pretraining and Transfer Learning 871 24.6 State of the art 875 Summary 878 Bibliographical and Historical Notes 878 25 Computer Vision 881 25.1 Introduction 881 25.2 Image Formation 882 25.3 Simple Image Features 888 25.4 Classifying Images 895 25.5 Detecting Objects 89925.6 The 3D World 901 25.7 Using Computer Vision 906 Summary 919 Bibliographical and Historical Notes 920 26 Robotics 925 26.1 Robots 925 26.2 Robot Hardware 926 26.3 What kind of problem is robotics solving? 930 26.4 Robotic Perception 931 26.5 Planning and Control 938 26.6 Planning Uncertain Movements 956 26.7 Reinforcement Learning in Robotics 958 26.8 Humans and Robots 961 26.9 Alternative Robotic Frameworks 968 26.10 Application Domains 971 Summary 974 Bibliographical and Historical Notes 975 VII Conclusions 27 Philosophy, Ethics, and Safety of AI 981 27.1 The Limits of AI 981 27.2 Can Machines Really Think? 984 27.3 The Ethics of AI 986 Summary 1005 Bibliographical and Historical Notes 1006 28 The Future of AI 101228.1 AI Components 1012 28.2 AI Architectures 1018 A Mathematical Background 1023 A.1 Complexity Analysis and O() Notation 1023 A.2 Vectors, Matrices, and Linear Algebra 1025 A.3 Probability Distributions 1027 Bibliographical and Historical Notes 1029 B Notes on Languages and Algorithms 1030 B.1 Defining Languages with Backus–Naur Form (BNF) 1030 B.2 Describing Algorithms with Pseudocode 1031 B.3 Online Supplemental Material 1032 Bibliography 1033 Index 1069
好例子网口号:伸出你的我的手 — 分享!
小贴士
感谢您为本站写下的评论,您的评论对其它用户来说具有重要的参考价值,所以请认真填写。
- 类似“顶”、“沙发”之类没有营养的文字,对勤劳贡献的楼主来说是令人沮丧的反馈信息。
- 相信您也不想看到一排文字/表情墙,所以请不要反馈意义不大的重复字符,也请尽量不要纯表情的回复。
- 提问之前请再仔细看一遍楼主的说明,或许是您遗漏了。
- 请勿到处挖坑绊人、招贴广告。既占空间让人厌烦,又没人会搭理,于人于己都无利。
关于好例子网
本站旨在为广大IT学习爱好者提供一个非营利性互相学习交流分享平台。本站所有资源都可以被免费获取学习研究。本站资源来自网友分享,对搜索内容的合法性不具有预见性、识别性、控制性,仅供学习研究,请务必在下载后24小时内给予删除,不得用于其他任何用途,否则后果自负。基于互联网的特殊性,平台无法对用户传输的作品、信息、内容的权属或合法性、安全性、合规性、真实性、科学性、完整权、有效性等进行实质审查;无论平台是否已进行审查,用户均应自行承担因其传输的作品、信息、内容而可能或已经产生的侵权或权属纠纷等法律责任。本站所有资源不代表本站的观点或立场,基于网友分享,根据中国法律《信息网络传播权保护条例》第二十二与二十三条之规定,若资源存在侵权或相关问题请联系本站客服人员,点此联系我们。关于更多版权及免责申明参见 版权及免责申明
网友评论
我要评论