实例介绍
【实例简介】Algebra, Topology, Differential Calculus, and
Optimization Theory
For Computer Science and Machine Learning
【实例截图】英文版pdf ,1962页
【核心代码】
Contents Contents 3 1 Introduction 17 2 Groups, Rings, and Fields 19 2.1 Groups, Subgroups, Cosets . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 2.2 Cyclic Groups . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 2.3 Rings and Fields . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 I Linear Algebra 43 3 Vector Spaces, Bases, Linear Maps 45 3.1 Motivations: Linear Combinations, Linear Independence, Rank . . . . . . . 45 3.2 Vector Spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57 3.3 Indexed Families; the Sum Notation P i∈I ai . . . . . . . . . . . . . . . . . . 60 3.4 Linear Independence, Subspaces . . . . . . . . . . . . . . . . . . . . . . . . 66 3.5 Bases of a Vector Space . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73 3.6 Matrices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80 3.7 Linear Maps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85 3.8 Quotient Spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93 3.9 Linear Forms and the Dual Space . . . . . . . . . . . . . . . . . . . . . . . . 94 3.10 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97 3.11 Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99 4 Matrices and Linear Maps 107 4.1 Representation of Linear Maps by Matrices . . . . . . . . . . . . . . . . . . 107 4.2 Composition of Linear Maps and Matrix Multiplication . . . . . . . . . . . 112 4.3 Change of Basis Matrix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117 4.4 The Effect of a Change of Bases on Matrices . . . . . . . . . . . . . . . . . 120 4.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124 4.6 Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124 5 Haar Bases, Haar Wavelets, Hadamard Matrices 131 3 4 CONTENTS 5.1 Introduction to Signal Compression Using Haar Wavelets . . . . . . . . . . 131 5.2 Haar Matrices, Scaling Properties of Haar Wavelets . . . . . . . . . . . . . . 133 5.3 Kronecker Product Construction of Haar Matrices . . . . . . . . . . . . . . 138 5.4 Multiresolution Signal Analysis with Haar Bases . . . . . . . . . . . . . . . 140 5.5 Haar Transform for Digital Images . . . . . . . . . . . . . . . . . . . . . . . 142 5.6 Hadamard Matrices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149 5.7 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151 5.8 Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151 6 Direct Sums 155 6.1 Sums, Direct Sums, Direct Products . . . . . . . . . . . . . . . . . . . . . . 155 6.2 The Rank-Nullity Theorem; Grassmann’s Relation . . . . . . . . . . . . . . 165 6.3 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171 6.4 Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 172 7 Determinants 181 7.1 Permutations, Signature of a Permutation . . . . . . . . . . . . . . . . . . . 181 7.2 Alternating Multilinear Maps . . . . . . . . . . . . . . . . . . . . . . . . . . 185 7.3 Definition of a Determinant . . . . . . . . . . . . . . . . . . . . . . . . . . . 189 7.4 Inverse Matrices and Determinants . . . . . . . . . . . . . . . . . . . . . . . 197 7.5 Systems of Linear Equations and Determinants . . . . . . . . . . . . . . . . 200 7.6 Determinant of a Linear Map . . . . . . . . . . . . . . . . . . . . . . . . . . 203 7.7 The Cayley–Hamilton Theorem . . . . . . . . . . . . . . . . . . . . . . . . . 203 7.8 Permanents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 209 7.9 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 211 7.10 Further Readings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 212 7.11 Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 212 8 Gaussian Elimination, LU, Cholesky, Echelon Form 219 8.1 Motivating Example: Curve Interpolation . . . . . . . . . . . . . . . . . . . 219 8.2 Gaussian Elimination . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 223 8.3 Elementary Matrices and Row Operations . . . . . . . . . . . . . . . . . . . 228 8.4 LU-Factorization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 231 8.5 P A = LU Factorization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 237 8.6 Proof of Theorem 8.5 ~ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 245 8.7 Dealing with Roundoff Errors; Pivoting Strategies . . . . . . . . . . . . . . . 251 8.8 Gaussian Elimination of Tridiagonal Matrices . . . . . . . . . . . . . . . . . 252 8.9 SPD Matrices and the Cholesky Decomposition . . . . . . . . . . . . . . . . 254 8.10 Reduced Row Echelon Form . . . . . . . . . . . . . . . . . . . . . . . . . . . 263 8.11 RREF, Free Variables, Homogeneous Systems . . . . . . . . . . . . . . . . . 269 8.12 Uniqueness of RREF . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 272 8.13 Solving Linear Systems Using RREF . . . . . . . . . . . . . . . . . . . . . . 274 8.14 Elementary Matrices and Columns Operations . . . . . . . . . . . . . . . . 281 CONTENTS 5 8.15 Transvections and Dilatations ~ . . . . . . . . . . . . . . . . . . . . . . . . 282 8.16 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 287 8.17 Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 289 9 Vector Norms and Matrix Norms 301 9.1 Normed Vector Spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 301 9.2 Matrix Norms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 312 9.3 Subordinate Norms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 317 9.4 Inequalities Involving Subordinate Norms . . . . . . . . . . . . . . . . . . . 324 9.5 Condition Numbers of Matrices . . . . . . . . . . . . . . . . . . . . . . . . . 326 9.6 An Application of Norms: Inconsistent Linear Systems . . . . . . . . . . . . 335 9.7 Limits of Sequences and Series . . . . . . . . . . . . . . . . . . . . . . . . . 336 9.8 The Matrix Exponential . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 339 9.9 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 342 9.10 Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 344 10 Iterative Methods for Solving Linear Systems 351 10.1 Convergence of Sequences of Vectors and Matrices . . . . . . . . . . . . . . 351 10.2 Convergence of Iterative Methods . . . . . . . . . . . . . . . . . . . . . . . . 354 10.3 Methods of Jacobi, Gauss–Seidel, and Relaxation . . . . . . . . . . . . . . . 356 10.4 Convergence of the Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . 364 10.5 Convergence Methods for Tridiagonal Matrices . . . . . . . . . . . . . . . . 367 10.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 372 10.7 Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 373 11 The Dual Space and Duality 375 11.1 The Dual Space E ∗ and Linear Forms . . . . . . . . . . . . . . . . . . . . . 375 11.2 Pairing and Duality Between E and E ∗ . . . . . . . . . . . . . . . . . . . . 382 11.3 The Duality Theorem and Some Consequences . . . . . . . . . . . . . . . . 387 11.4 The Bidual and Canonical Pairings . . . . . . . . . . . . . . . . . . . . . . . 393 11.5 Hyperplanes and Linear Forms . . . . . . . . . . . . . . . . . . . . . . . . . 395 11.6 Transpose of a Linear Map and of a Matrix . . . . . . . . . . . . . . . . . . 396 11.7 Properties of the Double Transpose . . . . . . . . . . . . . . . . . . . . . . . 403 11.8 The Four Fundamental Subspaces . . . . . . . . . . . . . . . . . . . . . . . 405 11.9 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 408 11.10 Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 409 12 Euclidean Spaces 413 12.1 Inner Products, Euclidean Spaces . . . . . . . . . . . . . . . . . . . . . . . . 413 12.2 Orthogonality and Duality in Euclidean Spaces . . . . . . . . . . . . . . . . 422 12.3 Adjoint of a Linear Map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 429 12.4 Existence and Construction of Orthonormal Bases . . . . . . . . . . . . . . 432 12.5 Linear Isometries (Orthogonal Transformations) . . . . . . . . . . . . . . . . 439 6 CONTENTS 12.6 The Orthogonal Group, Orthogonal Matrices . . . . . . . . . . . . . . . . . 442 12.7 The Rodrigues Formula . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 444 12.8 QR-Decomposition for Invertible Matrices . . . . . . . . . . . . . . . . . . . 447 12.9 Some Applications of Euclidean Geometry . . . . . . . . . . . . . . . . . . . 452 12.10 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 453 12.11 Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 455 13 QR-Decomposition for Arbitrary Matrices 467 13.1 Orthogonal Reflections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 467 13.2 QR-Decomposition Using Householder Matrices . . . . . . . . . . . . . . . . 472 13.3 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 482 13.4 Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 482 14 Hermitian Spaces 489 14.1 Hermitian Spaces, Pre-Hilbert Spaces . . . . . . . . . . . . . . . . . . . . . 489 14.2 Orthogonality, Duality, Adjoint of a Linear Map . . . . . . . . . . . . . . . 498 14.3 Linear Isometries (Also Called Unitary Transformations) . . . . . . . . . . . 503 14.4 The Unitary Group, Unitary Matrices . . . . . . . . . . . . . . . . . . . . . 505 14.5 Hermitian Reflections and QR-Decomposition . . . . . . . . . . . . . . . . . 508 14.6 Orthogonal Projections and Involutions . . . . . . . . . . . . . . . . . . . . 513 14.7 Dual Norms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 516 14.8 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 523 14.9 Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 524 15 Eigenvectors and Eigenvalues 529 15.1 Eigenvectors and Eigenvalues of a Linear Map . . . . . . . . . . . . . . . . . 529 15.2 Reduction to Upper Triangular Form . . . . . . . . . . . . . . . . . . . . . . 537 15.3 Location of Eigenvalues . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 541 15.4 Conditioning of Eigenvalue Problems . . . . . . . . . . . . . . . . . . . . . . 544 15.5 Eigenvalues of the Matrix Exponential . . . . . . . . . . . . . . . . . . . . . 547 15.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 549 15.7 Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 550 16 Unit Quaternions and Rotations in SO(3) 561 16.1 The Group SU(2) and the Skew Field H of Quaternions . . . . . . . . . . . 561 16.2 Representation of Rotation in SO(3) By Quaternions in SU(2) . . . . . . . 563 16.3 Matrix Representation of the Rotation rq . . . . . . . . . . . . . . . . . . . 568 16.4 An Algorithm to Find a Quaternion Representing a Rotation . . . . . . . . 570 16.5 The Exponential Map exp: su(2) → SU(2) . . . . . . . . . . . . . . . . . . 573 16.6 Quaternion Interpolation ~ . . . . . . . . . . . . . . . . . . . . . . . . . . . 575 16.7 Nonexistence of a “Nice” Section from SO(3) to SU(2) . . . . . . . . . . . . 577 16.8 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 579 16.9 Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 580 CONTENTS 7 17 Spectral Theorems 583 17.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 583 17.2 Normal Linear Maps: Eigenvalues and Eigenvectors . . . . . . . . . . . . . . 583 17.3 Spectral Theorem for Normal Linear Maps . . . . . . . . . . . . . . . . . . . 589 17.4 Self-Adjoint and Other Special Linear Maps . . . . . . . . . . . . . . . . . . 594 17.5 Normal and Other Special Matrices . . . . . . . . . . . . . . . . . . . . . . . 600 17.6 Rayleigh–Ritz Theorems and Eigenvalue Interlacing . . . . . . . . . . . . . 603 17.7 The Courant–Fischer Theorem; Perturbation Results . . . . . . . . . . . . . 608 17.8 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 611 17.9 Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 612 18 Computing Eigenvalues and Eigenvectors 619 18.1 The Basic QR Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . 621 18.2 Hessenberg Matrices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 627 18.3 Making the QR Method More Efficient Using Shifts . . . . . . . . . . . . . 633 18.4 Krylov Subspaces; Arnoldi Iteration . . . . . . . . . . . . . . . . . . . . . . 638 18.5 GMRES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 642 18.6 The Hermitian Case; Lanczos Iteration . . . . . . . . . . . . . . . . . . . . . 643 18.7 Power Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 644 18.8 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 646 18.9 Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 647 19 Introduction to The Finite Elements Method 649 19.1 A One-Dimensional Problem: Bending of a Beam . . . . . . . . . . . . . . . 649 19.2 A Two-Dimensional Problem: An Elastic Membrane . . . . . . . . . . . . . 660 19.3 Time-Dependent Boundary Problems . . . . . . . . . . . . . . . . . . . . . . 663 20 Graphs and Graph Laplacians; Basic Facts 671 20.1 Directed Graphs, Undirected Graphs, Weighted Graphs . . . . . . . . . . . 674 20.2 Laplacian Matrices of Graphs . . . . . . . . . . . . . . . . . . . . . . . . . . 681 20.3 Normalized Laplacian Matrices of Graphs . . . . . . . . . . . . . . . . . . . 685 20.4 Graph Clustering Using Normalized Cuts . . . . . . . . . . . . . . . . . . . 689 20.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 691 20.6 Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 692 21 Spectral Graph Drawing 695 21.1 Graph Drawing and Energy Minimization . . . . . . . . . . . . . . . . . . . 695 21.2 Examples of Graph Drawings . . . . . . . . . . . . . . . . . . . . . . . . . . 698 21.3 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 702 22 Singular Value Decomposition and Polar Form 705 22.1 Properties of f ∗ ◦ f . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 705 22.2 Singular Value Decomposition for Square Matrices . . . . . . . . . . . . . . 709 8 CONTENTS 22.3 Polar Form for Square Matrices . . . . . . . . . . . . . . . . . . . . . . . . . 712 22.4 Singular Value Decomposition for Rectangular Matrices . . . . . . . . . . . 715 22.5 Ky Fan Norms and Schatten Norms . . . . . . . . . . . . . . . . . . . . . . 718 22.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 719 22.7 Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 719 23 Applications of SVD and Pseudo-Inverses 723 23.1 Least Squares Problems and the Pseudo-Inverse . . . . . . . . . . . . . . . . 723 23.2 Properties of the Pseudo-Inverse . . . . . . . . . . . . . . . . . . . . . . . . 730 23.3 Data Compression and SVD . . . . . . . . . . . . . . . . . . . . . . . . . . . 735 23.4 Principal Components Analysis (PCA) . . . . . . . . . . . . . . . . . . . . . 737 23.5 Best Affine Approximation . . . . . . . . . . . . . . . . . . . . . . . . . . . 748 23.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 752 23.7 Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 753 II Affine and Projective Geometry 757 24 Basics of Affine Geometry 759 24.1 Affine Spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 759 24.2 Examples of Affine Spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . 768 24.3 Chasles’s Identity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 769 24.4 Affine Combinations, Barycenters . . . . . . . . . . . . . . . . . . . . . . . . 770 24.5 Affine Subspaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 775 24.6 Affine Independence and Affine Frames . . . . . . . . . . . . . . . . . . . . . 781 24.7 Affine Maps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 787 24.8 Affine Groups . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 794 24.9 Affine Geometry: A Glimpse . . . . . . . . . . . . . . . . . . . . . . . . . . 796 24.10 Affine Hyperplanes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 800 24.11 Intersection of Affine Spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . 802 25 Embedding an Affine Space in a Vector Space 805 25.1 The “Hat Construction,” or Homogenizing . . . . . . . . . . . . . . . . . . . 805 25.2 Affine Frames of E and Bases of Eˆ . . . . . . . . . . . . . . . . . . . . . . . 812 25.3 Another Construction of Eˆ . . . . . . . . . . . . . . . . . . . . . . . . . . . 815 25.4 Extending Affine Maps to Linear Maps . . . . . . . . . . . . . . . . . . . . . 818 26 Basics of Projective Geometry 823 26.1 Why Projective Spaces? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 823 26.2 Projective Spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 828 26.3 Projective Subspaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 833 26.4 Projective Frames . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 836 26.5 Projective Maps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 850 CONTENTS 9 26.6 Finding a Homography Between Two Projective Frames . . . . . . . . . . . 856 26.7 Affine Patches . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 869 26.8 Projective Completion of an Affine Space . . . . . . . . . . . . . . . . . . . 872 26.9 Making Good Use of Hyperplanes at Infinity . . . . . . . . . . . . . . . . . 877 26.10 The Cross-Ratio . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 880 26.11 Fixed Points of Homographies and Homologies . . . . . . . . . . . . . . . . 884 26.12 Duality in Projective Geometry . . . . . . . . . . . . . . . . . . . . . . . . . 898 26.13 Cross-Ratios of Hyperplanes . . . . . . . . . . . . . . . . . . . . . . . . . . . 902 26.14 Complexification of a Real Projective Space . . . . . . . . . . . . . . . . . . 904 26.15 Similarity Structures on a Projective Space . . . . . . . . . . . . . . . . . . 906 26.16 Some Applications of Projective Geometry . . . . . . . . . . . . . . . . . . . 915 III The Geometry of Bilinear Forms 921 27 The Cartan–Dieudonn´e Theorem 923 27.1 The Cartan–Dieudonn´e Theorem for Linear Isometries . . . . . . . . . . . . 923 27.2 Affine Isometries (Rigid Motions) . . . . . . . . . . . . . . . . . . . . . . . . 935 27.3 Fixed Points of Affine Maps . . . . . . . . . . . . . . . . . . . . . . . . . . . 937 27.4 Affine Isometries and Fixed Points . . . . . . . . . . . . . . . . . . . . . . . 939 27.5 The Cartan–Dieudonn´e Theorem for Affine Isometries . . . . . . . . . . . . 945 28 Isometries of Hermitian Spaces 949 28.1 The Cartan–Dieudonn´e Theorem, Hermitian Case . . . . . . . . . . . . . . . 949 28.2 Affine Isometries (Rigid Motions) . . . . . . . . . . . . . . . . . . . . . . . . 958 29 The Geometry of Bilinear Forms; Witt’s Theorem 963 29.1 Bilinear Forms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 963 29.2 Sesquilinear Forms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 971 29.3 Orthogonality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 975 29.4 Adjoint of a Linear Map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 980 29.5 Isometries Associated with Sesquilinear Forms . . . . . . . . . . . . . . . . . 982 29.6 Totally Isotropic Subspaces . . . . . . . . . . . . . . . . . . . . . . . . . . . 986 29.7 Witt Decomposition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 992 29.8 Symplectic Groups . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1000 29.9 Orthogonal Groups and the Cartan–Dieudonn´e Theorem . . . . . . . . . . . 1004 29.10 Witt’s Theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1011 IV Algebra: PID’s, UFD’s, Noetherian Rings, Tensors, Modules over a PID, Normal Forms 1017 30 Polynomials, Ideals and PID’s 1019 10 CONTENTS 30.1 Multisets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1019 30.2 Polynomials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1020 30.3 Euclidean Division of Polynomials . . . . . . . . . . . . . . . . . . . . . . . 1026 30.4 Ideals, PID’s, and Greatest Common Divisors . . . . . . . . . . . . . . . . . 1028 30.5 Factorization and Irreducible Factors in K[X] . . . . . . . . . . . . . . . . . 1036 30.6 Roots of Polynomials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1040 30.7 Polynomial Interpolation (Lagrange, Newton, Hermite) . . . . . . . . . . . . 1047 31 Annihilating Polynomials; Primary Decomposition 1055 31.1 Annihilating Polynomials and the Minimal Polynomial . . . . . . . . . . . . 1057 31.2 Minimal Polynomials of Diagonalizable Linear Maps . . . . . . . . . . . . . 1059 31.3 Commuting Families of Linear Maps . . . . . . . . . . . . . . . . . . . . . . 1062 31.4 The Primary Decomposition Theorem . . . . . . . . . . . . . . . . . . . . . 1065 31.5 Jordan Decomposition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1071 31.6 Nilpotent Linear Maps and Jordan Form . . . . . . . . . . . . . . . . . . . . 1074 31.7 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1080 31.8 Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1081 32 UFD’s, Noetherian Rings, Hilbert’s Basis Theorem 1085 32.1 Unique Factorization Domains (Factorial Rings) . . . . . . . . . . . . . . . . 1085 32.2 The Chinese Remainder Theorem . . . . . . . . . . . . . . . . . . . . . . . . 1099 32.3 Noetherian Rings and Hilbert’s Basis Theorem . . . . . . . . . . . . . . . . 1105 32.4 Futher Readings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1109 33 Tensor Algebras 1111 33.1 Linear Algebra Preliminaries: Dual Spaces and Pairings . . . . . . . . . . . 1113 33.2 Tensors Products . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1118 33.3 Bases of Tensor Products . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1130 33.4 Some Useful Isomorphisms for Tensor Products . . . . . . . . . . . . . . . . 1131 33.5 Duality for Tensor Products . . . . . . . . . . . . . . . . . . . . . . . . . . . 1135 33.6 Tensor Algebras . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1141 33.7 Symmetric Tensor Powers . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1148 33.8 Bases of Symmetric Powers . . . . . . . . . . . . . . . . . . . . . . . . . . . 1152 33.9 Some Useful Isomorphisms for Symmetric Powers . . . . . . . . . . . . . . . 1155 33.10 Duality for Symmetric Powers . . . . . . . . . . . . . . . . . . . . . . . . . . 1155 33.11 Symmetric Algebras . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1159 33.12 Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1162 34 Exterior Tensor Powers and Exterior Algebras 1165 34.1 Exterior Tensor Powers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1165 34.2 Bases of Exterior Powers . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1170 34.3 Some Useful Isomorphisms for Exterior Powers . . . . . . . . . . . . . . . . 1173 34.4 Duality for Exterior Powers . . . . . . . . . . . . . . . . . . . . . . . . . . . 1173 CONTENTS 11 34.5 Exterior Algebras . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1177 34.6 The Hodge ∗-Operator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1181 34.7 Left and Right Hooks ~ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1185 34.8 Testing Decomposability ~ . . . . . . . . . . . . . . . . . . . . . . . . . . . 1195 34.9 The Grassmann-Pl¨ucker’s Equations and Grassmannians ~ . . . . . . . . . 1198 34.10 Vector-Valued Alternating Forms . . . . . . . . . . . . . . . . . . . . . . . . 1201 34.11 Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1205 35 Introduction to Modules; Modules over a PID 1207 35.1 Modules over a Commutative Ring . . . . . . . . . . . . . . . . . . . . . . . 1207 35.2 Finite Presentations of Modules . . . . . . . . . . . . . . . . . . . . . . . . . 1216 35.3 Tensor Products of Modules over a Commutative Ring . . . . . . . . . . . . 1222 35.4 Torsion Modules over a PID; Primary Decomposition . . . . . . . . . . . . . 1225 35.5 Finitely Generated Modules over a PID . . . . . . . . . . . . . . . . . . . . 1231 35.6 Extension of the Ring of Scalars . . . . . . . . . . . . . . . . . . . . . . . . 1247 36 Normal Forms; The Rational Canonical Form 1253 36.1 The Torsion Module Associated With An Endomorphism . . . . . . . . . . 1253 36.2 The Rational Canonical Form . . . . . . . . . . . . . . . . . . . . . . . . . . 1261 36.3 The Rational Canonical Form, Second Version . . . . . . . . . . . . . . . . . 1268 36.4 The Jordan Form Revisited . . . . . . . . . . . . . . . . . . . . . . . . . . . 1269 36.5 The Smith Normal Form . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1272 V Topology, Differential Calculus 1285 37 Topology 1287 37.1 Metric Spaces and Normed Vector Spaces . . . . . . . . . . . . . . . . . . . 1287 37.2 Topological Spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1294 37.3 Continuous Functions, Limits . . . . . . . . . . . . . . . . . . . . . . . . . . 1303 37.4 Connected Sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1311 37.5 Compact Sets and Locally Compact Spaces . . . . . . . . . . . . . . . . . . 1320 37.6 Second-Countable and Separable Spaces . . . . . . . . . . . . . . . . . . . . 1331 37.7 Sequential Compactness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1335 37.8 Complete Metric Spaces and Compactness . . . . . . . . . . . . . . . . . . . 1341 37.9 Completion of a Metric Space . . . . . . . . . . . . . . . . . . . . . . . . . . 1344 37.10 The Contraction Mapping Theorem . . . . . . . . . . . . . . . . . . . . . . 1351 37.11 Continuous Linear and Multilinear Maps . . . . . . . . . . . . . . . . . . . . 1355 37.12 Completion of a Normed Vector Space . . . . . . . . . . . . . . . . . . . . . 1362 37.13 Normed Affine Spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1365 37.14 Futher Readings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1365 38 A Detour On Fractals 1367 12 CONTENTS 38.1 Iterated Function Systems and Fractals . . . . . . . . . . . . . . . . . . . . 1367 39 Differential Calculus 1375 39.1 Directional Derivatives, Total Derivatives . . . . . . . . . . . . . . . . . . . 1375 39.2 Jacobian Matrices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1389 39.3 The Implicit and The Inverse Function Theorems . . . . . . . . . . . . . . . 1397 39.4 Tangent Spaces and Differentials . . . . . . . . . . . . . . . . . . . . . . . . 1401 39.5 Second-Order and Higher-Order Derivatives . . . . . . . . . . . . . . . . . . 1402 39.6 Taylor’s formula, Fa`a di Bruno’s formula . . . . . . . . . . . . . . . . . . . . 1407 39.7 Vector Fields, Covariant Derivatives, Lie Brackets . . . . . . . . . . . . . . . 1411 39.8 Futher Readings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1413 VI Preliminaries for Optimization Theory 1415 40 Extrema of Real-Valued Functions 1417 40.1 Local Extrema and Lagrange Multipliers . . . . . . . . . . . . . . . . . . . . 1417 40.2 Using Second Derivatives to Find Extrema . . . . . . . . . . . . . . . . . . . 1427 40.3 Using Convexity to Find Extrema . . . . . . . . . . . . . . . . . . . . . . . 1430 40.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1440 41 Newton’s Method and Its Generalizations 1441 41.1 Newton’s Method for Real Functions of a Real Argument . . . . . . . . . . 1441 41.2 Generalizations of Newton’s Method . . . . . . . . . . . . . . . . . . . . . . 1442 41.3 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1448 42 Quadratic Optimization Problems 1449 42.1 Quadratic Optimization: The Positive Definite Case . . . . . . . . . . . . . 1449 42.2 Quadratic Optimization: The General Case . . . . . . . . . . . . . . . . . . 1458 42.3 Maximizing a Quadratic Function on the Unit Sphere . . . . . . . . . . . . 1463 42.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1468 43 Schur Complements and Applications 1469 43.1 Schur Complements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1469 43.2 SPD Matrices and Schur Complements . . . . . . . . . . . . . . . . . . . . . 1472 43.3 SP Semidefinite Matrices and Schur Complements . . . . . . . . . . . . . . 1473 VII Linear Optimization 1475 44 Convex Sets, Cones, H-Polyhedra 1477 44.1 What is Linear Programming? . . . . . . . . . . . . . . . . . . . . . . . . . 1477 44.2 Affine Subsets, Convex Sets, Hyperplanes, Half-Spaces . . . . . . . . . . . . 1479 44.3 Cones, Polyhedral Cones, and H-Polyhedra . . . . . . . . . . . . . . . . . . 1482 CONTENTS 13 45 Linear Programs 1489 45.1 Linear Programs, Feasible Solutions, Optimal Solutions . . . . . . . . . . . 1489 45.2 Basic Feasible Solutions and Vertices . . . . . . . . . . . . . . . . . . . . . . 1495 46 The Simplex Algorithm 1503 46.1 The Idea Behind the Simplex Algorithm . . . . . . . . . . . . . . . . . . . . 1503 46.2 The Simplex Algorithm in General . . . . . . . . . . . . . . . . . . . . . . . 1512 46.3 How to Perform a Pivoting Step Efficiently . . . . . . . . . . . . . . . . . . 1519 46.4 The Simplex Algorithm Using Tableaux . . . . . . . . . . . . . . . . . . . . 1523 46.5 Computational Efficiency of the Simplex Method . . . . . . . . . . . . . . . 1532 47 Linear Programming and Duality 1535 47.1 Variants of the Farkas Lemma . . . . . . . . . . . . . . . . . . . . . . . . . . 1535 47.2 The Duality Theorem in Linear Programming . . . . . . . . . . . . . . . . . 1540 47.3 Complementary Slackness Conditions . . . . . . . . . . . . . . . . . . . . . 1548 47.4 Duality for Linear Programs in Standard Form . . . . . . . . . . . . . . . . 1550 47.5 The Dual Simplex Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . 1553 47.6 The Primal-Dual Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . 1558 VIII NonLinear Optimization 1569 48 Basics of Hilbert Spaces 1571 48.1 The Projection Lemma, Duality . . . . . . . . . . . . . . . . . . . . . . . . 1571 48.2 Farkas–Minkowski Lemma in Hilbert Spaces . . . . . . . . . . . . . . . . . . 1588 49 General Results of Optimization Theory 1591 49.1 Optimization Problems; Basic Terminology . . . . . . . . . . . . . . . . . . 1591 49.2 Existence of Solutions of an Optimization Problem . . . . . . . . . . . . . . 1594 49.3 Minima of Quadratic Functionals . . . . . . . . . . . . . . . . . . . . . . . . 1599 49.4 Elliptic Functionals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1605 49.5 Iterative Methods for Unconstrained Problems . . . . . . . . . . . . . . . . 1608 49.6 Gradient Descent Methods for Unconstrained Problems . . . . . . . . . . . 1612 49.7 Convergence of Gradient Descent with Variable Stepsize . . . . . . . . . . . 1617 49.8 Steepest Descent for an Arbitrary Norm . . . . . . . . . . . . . . . . . . . . 1622 49.9 Newton’s Method For Finding a Minimum . . . . . . . . . . . . . . . . . . . 1624 49.10 Conjugate Gradient Methods; Unconstrained Problems . . . . . . . . . . . . 1628 49.11 Gradient Projection for Constrained Optimization . . . . . . . . . . . . . . 1640 49.12 Penalty Methods for Constrained Optimization . . . . . . . . . . . . . . . . 1642 49.13 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1644 50 Introduction to Nonlinear Optimization 1647 50.1 The Cone of Feasible Directions . . . . . . . . . . . . . . . . . . . . . . . . . 1647 14 CONTENTS 50.2 Active Constraints and Qualified Constraints . . . . . . . . . . . . . . . . . 1654 50.3 The Karush–Kuhn–Tucker Conditions . . . . . . . . . . . . . . . . . . . . . 1660 50.4 Equality Constrained Minimization . . . . . . . . . . . . . . . . . . . . . . . 1672 50.5 Hard Margin Support Vector Machine; Version I . . . . . . . . . . . . . . . 1677 50.6 Hard Margin Support Vector Machine; Version II . . . . . . . . . . . . . . . 1681 50.7 Lagrangian Duality and Saddle Points . . . . . . . . . . . . . . . . . . . . . 1690 50.8 Weak and Strong Duality . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1699 50.9 Handling Equality Constraints Explicitly . . . . . . . . . . . . . . . . . . . . 1707 50.10 Dual of the Hard Margin Support Vector Machine . . . . . . . . . . . . . . 1710 50.11 Conjugate Function and Legendre Dual Function . . . . . . . . . . . . . . . 1715 50.12 Some Techniques to Obtain a More Useful Dual Program . . . . . . . . . . 1725 50.13 Uzawa’s Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1729 50.14 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1735 51 Subgradients and Subdifferentials 1737 51.1 Extended Real-Valued Convex Functions . . . . . . . . . . . . . . . . . . . . 1739 51.2 Subgradients and Subdifferentials . . . . . . . . . . . . . . . . . . . . . . . . 1748 51.3 Basic Properties of Subgradients and Subdifferentials . . . . . . . . . . . . . 1760 51.4 Additional Properties of Subdifferentials . . . . . . . . . . . . . . . . . . . . 1766 51.5 The Minimum of a Proper Convex Function . . . . . . . . . . . . . . . . . . 1770 51.6 Generalization of the Lagrangian Framework . . . . . . . . . . . . . . . . . 1776 51.7 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1780 52 Dual Ascent Methods; ADMM 1783 52.1 Dual Ascent . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1785 52.2 Augmented Lagrangians and the Method of Multipliers . . . . . . . . . . . . 1789 52.3 ADMM: Alternating Direction Method of Multipliers . . . . . . . . . . . . . 1794 52.4 Convergence of ADMM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1797 52.5 Stopping Criteria . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1806 52.6 Some Applications of ADMM . . . . . . . . . . . . . . . . . . . . . . . . . . 1807 52.7 Applications of ADMM to ` 1 -Norm Problems . . . . . . . . . . . . . . . . . 1810 52.8 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1815 IX Applications to Machine Learning 1817 53 Ridge Regression and Lasso Regression 1819 53.1 Ridge Regression . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1819 53.2 Lasso Regression (` 1 -Regularized Regression) . . . . . . . . . . . . . . . . . 1829 53.3 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1835 54 Positive Definite Kernels 1837 54.1 Basic Properties of Positive Definite Kernels . . . . . . . . . . . . . . . . . . 1837 CONTENTS 15 54.2 Hilbert Space Representation of a Positive Kernel . . . . . . . . . . . . . . . 1848 54.3 Kernel PCA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1852 54.4 ν-SV Regression . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1855 55 Soft Margin Support Vector Machines 1865 55.1 Soft Margin Support Vector Machines; (SVMs1) . . . . . . . . . . . . . . . . 1868 55.2 Soft Margin Support Vector Machines; (SVMs2) . . . . . . . . . . . . . . . . 1878 55.3 Soft Margin Support Vector Machines; (SVMs2 0) . . . . . . . . . . . . . . . 1885 55.4 Soft Margin SVM; (SVMs3) . . . . . . . . . . . . . . . . . . . . . . . . . . . 1900 55.5 Soft Margin Support Vector Machines; (SVMs4) . . . . . . . . . . . . . . . . 1903 55.6 Soft Margin SVM; (SVMs5) . . . . . . . . . . . . . . . . . . . . . . . . . . . 1911 55.7 Summary and Comparison of the SVM Methods . . . . . . . . . . . . . . . 1914 X Appendices 1927 A Total Orthogonal Families in Hilbert Spaces 1929 A.1 Total Orthogonal Families, Fourier Coefficients . . . . . . . . . . . . . . . . 1929 A.2 The Hilbert Space ` 2 (K) and the Riesz-Fischer Theorem . . . . . . . . . . . 1937 B Zorn’s Lemma; Some Applications 1947 B.1 Statement of Zorn’s Lemma . . . . . . . . . . . . . . . . . . . . . . . . . . . 1947 B.2 Proof of the Existence of a Basis in a Vector Space . . . . . . . . . . . . . . 1948 B.3 Existence of Maximal Proper Ideals . . . . . . . . . . . . . . . . . . . . . . 1949 Bibliography 1951
好例子网口号:伸出你的我的手 — 分享!
小贴士
感谢您为本站写下的评论,您的评论对其它用户来说具有重要的参考价值,所以请认真填写。
- 类似“顶”、“沙发”之类没有营养的文字,对勤劳贡献的楼主来说是令人沮丧的反馈信息。
- 相信您也不想看到一排文字/表情墙,所以请不要反馈意义不大的重复字符,也请尽量不要纯表情的回复。
- 提问之前请再仔细看一遍楼主的说明,或许是您遗漏了。
- 请勿到处挖坑绊人、招贴广告。既占空间让人厌烦,又没人会搭理,于人于己都无利。
关于好例子网
本站旨在为广大IT学习爱好者提供一个非营利性互相学习交流分享平台。本站所有资源都可以被免费获取学习研究。本站资源来自网友分享,对搜索内容的合法性不具有预见性、识别性、控制性,仅供学习研究,请务必在下载后24小时内给予删除,不得用于其他任何用途,否则后果自负。基于互联网的特殊性,平台无法对用户传输的作品、信息、内容的权属或合法性、安全性、合规性、真实性、科学性、完整权、有效性等进行实质审查;无论平台是否已进行审查,用户均应自行承担因其传输的作品、信息、内容而可能或已经产生的侵权或权属纠纷等法律责任。本站所有资源不代表本站的观点或立场,基于网友分享,根据中国法律《信息网络传播权保护条例》第二十二与二十三条之规定,若资源存在侵权或相关问题请联系本站客服人员,点此联系我们。关于更多版权及免责申明参见 版权及免责申明
网友评论
我要评论