在好例子网,分享、交流、成长!
您当前所在位置:首页Others 开发实例一般编程问题 → PWM 加移相控制双有源全桥双向 DC-DC 变换器的研究

PWM 加移相控制双有源全桥双向 DC-DC 变换器的研究

一般编程问题

下载此实例
  • 开发语言:Others
  • 实例大小:7.45M
  • 下载次数:28
  • 浏览次数:92
  • 发布时间:2022-04-14
  • 实例类别:一般编程问题
  • 发 布 人:星杨
  • 文件格式:.pdf
  • 所需积分:2
 相关标签: pwm 变换器 DC PW 控制

实例介绍

【实例简介】PWM 加移相控制双有源全桥双向 DC-DC 变换器的研究

【实例截图】

 

【核心代码】

目 录
第一章 绪论 .......................................................................................................................................... 1
1.1 可再生能源发电...................................................................................................................... 1
1.2 基本的双向 DC-DC 变换器 ................................................................................................... 2
1.3 双有源桥式双向 DC-DC 变换器 ........................................................................................... 4
1.4 本文研究内容及意义 .............................................................................................................. 6
1.4.1 研究内容....................................................................................................................... 6
1.4.2 研究意义....................................................................................................................... 6
第二章 移相控制双有源全桥双向 DC-DC 变换器 ............................................................................ 7
2.1 移相控制双有源全桥双向 DC-DC 变换器的工作原理 ....................................................... 7
2.2 移相控制双有源全桥双向 DC-DC 变换器的工作特性 ....................................................... 9
2.2.1 传输功率....................................................................................................................... 9
2.2.2 软开关范围 ................................................................................................................. 11
2.3 本章小结 ............................................................................................................................... 12
第三章 单 PWM 加移相控制双有源全桥双向 DC-DC 变换器 ....................................................... 13
3.1 单 PWM 加移相控制双有源全桥双向 DC-DC 变换器的工作原理 .................................. 13
3.1.1 0≤D α ≤(1–D y1 )/2 ............................................................................................................ 15
3.1.2 –D y1 ≤D α < 0 .................................................................................................................. 17
3.1.3 –(1 D y1 )/2 ≤D α <–D y1 ................................................................................................... 19
3.2 单 PWM 加移相控制时变换器的工作特性 ........................................................................ 21
3.2.1 传输功率..................................................................................................................... 21
3.2.2 软开关范围 ................................................................................................................. 24
3.3 单 PWM 加移相控制策略的优化 ......................................................................................... 27
3.3.1 0 ≤D α ≤(1–D y1 )/2 ........................................................................................................... 27
3.3.2 –D y1 /2≤D α <0 ................................................................................................................ 29
3.4 本章小结 ............................................................................................................................... 33
第四章 双 PWM 加移相控制双有源全桥双向 DC-DC 变换器 ....................................................... 34
4.1 双 PWM 加移相控制双有源全桥双向 DC-DC 变换器的工作原理 .................................. 34
4.2 双 PWM 加移相控制时的工作特性 .................................................................................... 38
4.2.1 传输功率..................................................................................................................... 38
PWM 加移相控制双有源全桥双向 DC-DC 变换器的研究
IV
4.2.2 软开关范围 ................................................................................................................. 42
4.3 双 PWM 加移相控制策略的优化 ........................................................................................ 47
4.3.1 情况 A ......................................................................................................................... 47
4.3.2 情况 B ......................................................................................................................... 49
4.3.3 情况 C ......................................................................................................................... 50
4.3.4 情况 F ......................................................................................................................... 50
4.4 本章小结 ............................................................................................................................... 54
第五章 实验验证与讨论..................................................................................................................... 55
5.1 主电路参数设计.................................................................................................................... 55
5.1.1 性能参数..................................................................................................................... 55
5.1.2 电感设计..................................................................................................................... 55
5.1.3 变压器设计 ................................................................................................................. 57
5.1.4 开关管选取 ................................................................................................................. 58
5.2 控制电路设计........................................................................................................................ 58
5.2.1 优化的单 PWM 加移相控制的开关信号的实现方法 ............................................. 58
5.2.2 复合 PWM 加移相控制的开关信号的实现方法 ..................................................... 60
5.3 实验结果 ............................................................................................................................... 62
5.3.1 优化的单 PWM 加移相控制下变换器的稳态实验验证 ......................................... 62
5.3.2 复合 PWM 加移相控制下变换器的稳态实验验证 ................................................. 66
5.3.3 三种控制策略的效率对比 ......................................................................................... 67
5.4 本章小结 ............................................................................................................................... 69
第六章 结束语 .................................................................................................................................... 70
6.1 本文的主要工作.................................................................................................................... 70
6.2 工作展望 ............................................................................................................................... 70
参考文献 .............................................................................................................................................. 71
致 谢 .................................................................................................................................................. 74
攻读硕士学位期间所发表的论文及参与完成的科研项目 ............................................................... 75
附 录 1 ............................................................................................................................................... 76
附 录 2 ............................................................................................................................................... 77
南京航空航天大学硕士学位论文
V
图表清单
图 1.1 基于直流母线的可再生能源联合发电系统 ························································ 1
图 1.2 DC-DC 变换器的基本单元 ············································································ 2
图 1.3 几种基本的非隔离双向 DC-DC 变换器的拓扑结构 ············································· 2
图 1.4 四管 Buck-Boost 双向 DC-DC 变换器 ······························································· 3
图 1.5 基本的隔离型的双向 DC-DC 变换器 ······························································· 3
图 1.6 双有源桥式双向 DC-DC 变换器 ····································································· 4
图 1.7 双有源全桥双向 DC-DC 变换器的简化电路 ······················································ 5
图 2.1 双有源全桥双向 DC-DC 变换器电路图 ···························································· 7
图 2.2 移相控制时变换器的主要工作波形 ································································· 8
图 2.3 变换器正向工作时各开关模态的等效电路 ························································ 8
图 2.4 移相控制时的
*
o
P 随 D φ 的变化曲线 ································································ 11
图 2.5 D φ = 0.25 和 D φ = 0.75 时变换器的仿真工作波形 ················································· 11
图 2.6 移相控制时的变换器的软开关范围 ································································ 12
图 3.1 双有源全桥双向 DC-DC 变换器电路图 ··························································· 13
图 3.2 单 PWM 加移相控制时变换器的主要工作波形 ················································· 14
图 3.3 三种情况对应的 D y1 的范围 ·········································································· 15
图 3.4 0≤D α ≤(1–D y1 )/2 时变换器各开关状态的等效电路 ··············································· 16
图 3.5 –D y1 ≤D α <0 时变换器各开关状态的等效电路 ···················································· 18
图 3.6 –(1 D y1 )/2 ≤D α <–D y1 时变换器各开关状态的等效电路 ········································ 20
图 3.7 单 PWM 加移相控制时
*
o
P 随 D φ 的变化曲线 ····················································· 23
图 3.8 D φ = 0.25 和 D φ = 0.75 时变换器的仿真工作波形 ················································· 24
图 3.9 0 ≤D α ≤(1–D y1 )/2 时所有开关管实现 ZVS 时 D y1 的范围 ········································ 25
图 3.10 –D y1 /2≤D α <0 时所有开关管实现 ZVS 的 D y1 的范围 ·········································· 26
图 3.11 单 PWM 加移相控制时所有开关管实现 ZVS 的功率范围 ···································· 26
图 3.12 区域 1 内相同功率下电感电流有效值随着 D y1 的变化曲线 ··································· 28
图 3.13 电感电流有效值最小和线性控制时 D y1 随 D φ 的变化曲线(0≤D α ≤(1–D y1 )/2) ··············· 29
图 3.14 区域 2 内相同功率下电感电流有效值随着 D y1 的变化曲线 ··································· 30
图 3.15 电感电流有效值最小和线性控制时 D y1 随 D φ 的变化曲线(–D y1 /2≤D α <0) ·················· 31
图 3.16 0≤D φ <0.5 时 D y1 随 D φ 的变化曲线 ································································ 32
PWM 加移相控制双有源全桥双向 DC-DC 变换器的研究
VI
图 3.17 优化的单 PWM 加移相控制时变换器正向工作时
*
o
P 随 D φ 的变化曲线 ···················· 32
图 3.18 移相控制和优化的 PWM 加移相控制时
*
rms L
I 随
*
o
P 的变化曲线 ······························ 33
图 4.1 双有源全桥双向 DC-DC 变换器电路图 ··························································· 34
图 4.2 双 PWM 加移相控制时变换器的主要工作波形 ················································· 35
图 4.3 正向功率传输时 6 种情况的 D y1 的范围 ··························································· 37
图 4.4 双 PWM 加移相控制时的
*
o
P 随 D φ 的变化曲线 ·················································· 42
图 4.5 D y1 =0.5,D φ = 0.25 和 D φ = 0.75 时变换器的仿真工作波形 ···································· 42
图 4.6 情况 A 时所有开关管实现 ZVS 的 D y1 的范围 ··················································· 43
图 4.7 情况 B 和 C 满足 ZVS 条件时变换器的主要工作波形 ········································· 44
图 4.8 情况 B 和 C 时所有开关管实现 ZVS 的 D y1 的范围 ············································· 45
图 4.9 情况 F 时所有开关管实现 ZVS 的 D y1 的范围 ···················································· 46
图 4.10 双 PWM 加移相控制时所有开关管实现 ZVS 的功率范围 ···································· 47
图 4.11 优化的情况 A 时变换器的主要工作波形 ·························································· 49
图 4.12 优化的情况 C 时变换器的主要工作波形 ·························································· 50
图 4.13 优化控制策略后三种情况下功率范围与 k 的关系 ·············································· 52
图 4.14 三种情况下
*
rms L
I 与
*
o
P 的关系图 ····································································· 53
图 4.15 复合 PWM 加移相控制的功率曲线 ································································· 53
图 4.16 移相控制、优化的 PWM 和复合 PWM 加移相控制时
*
rms L
I 随
*
o
P 的变化曲线 ············ 54
图 5.1 I Lrms_max 随 L 变化的规律曲线 ········································································ 56
图 5.2 定时器、比较单元和 PWM 输出的结构框图····················································· 58
图 5.3 单 PWM 加移相控制主要控制波形 ································································· 59
图 5.4 实现定时器 1 和定时器 3 移相控制的控制波形 ················································· 60
图 5.5 复合 PWM 加移相控制的主要控制波形··························································· 61
图 5.6 原理样机照片 ··························································································· 62
图 5.7 优化的单 PWM 加移相时轻载(10%满载)实验波形 ············································· 62
图 5.8 优化的单 PWM 加移相时半载实验波形··························································· 63
图 5.9 优化的单 PWM 加移相时满载实验波形··························································· 63
图 5.10 优化的单 PWM 加移相控制 10%满载时驱动电压、漏源级电压和漏极电流波形 ······· 64
图 5.11 优化的单 PWM 加移相控制半载时驱动电压、漏源级电压和漏极电流波形 ············· 65
图 5.12 优化的单 PWM 加移相控制 P o =2.1kW 时驱动电压、漏源级电压和漏极电流波形 ····· 65
图 5.13 复合 PWM 加移相时轻载(10%满载)实验波形 ··················································· 66
图 5.14 复合 PWM 加移相时半载实验波形 ································································· 66
南京航空航天大学硕士学位论文
VII
图 5.15 复合 PWM 加移相控制轻载时驱动电压、漏源级电压和漏极电流波形 ··················· 67
图 5.16 三种控制方式下变换器的效率曲线 ································································ 68
表 2.1 原副边开关管实现 ZVS 的条件 ····································································· 12
表 3.1 0 ≤D α ≤(1–D y1 )/2 时所有开关管实现 ZVS 的条件 ················································ 24
表 3.2 –D y1 /2≤D α <0 时所有开关管实现 ZVS 的条件 ···················································· 25
表 3.3 区域 1 内不同 k 时对应的最大误差
max
E  ························································· 29
表 3.4 区域 2 内不同 k 时对应的最大误差
max
E  ························································· 31
表 4.1 情况 A 时所有开关管实现 ZVS 的条件 ··························································· 43
表 4.2 优化控制后三种情况下
*
rms L
I 关于
*
o
P 的表达式 ··················································· 53
PWM 加移相控制双有源全桥双向 DC-DC 变换器的研究
VIII
注释表
A e_L 电感磁芯的有效导磁面积 K Tr 变压器的窗口填充系数
A e_Tr 变压器磁芯的有效导磁面积 L 电感
A w_L 电感磁芯的窗口面积 N L 电感绕组匝数
A w_Tr 变压器磁芯的窗口面积 P base 功率标幺化的基准值
B m 最大磁通密度 P o ,
*
o
P 输入平均功率及其标幺值
C 1 ~C 4 原边开关管结电容 Q 1 ~Q 4 原边开关管
C 5 ~C 8 副边开关管结电容 Q 5 ~Q 8 副边开关管
D y1 原边桥臂中点电压的占空比 S L 电感导线面积
D y2 副边桥臂中点电压的占空比 S Tr 变压器导线面积
D 1 ~D 4 原边开关管体二极管 T s 开关周期
D 5 ~D 8 副边开关管体二极管 V 1 , V 2 原边 1#源和副边 2#源电压
D φ 移相角对应半个周期的占空比 v AB 原边桥臂中点 A、B 之间电压
D α 上升沿相位差对应的占空比 v CD 副边桥臂中点 C、D 之间电压
f s 开关频率 v' CD v CD 折算到原边电压
i 1 原边输入电流 v L 电感两端电压
I 1_ave 原边输入平均电流 ZVS 零电压开关
i 2 副边输出电流 CMPRx 比较寄存器 x
I base 电流标幺化的基准值 EVA 事务管理器 A
i L 电感电流 EVB 事务管理器 B
I Lrms ,
*
rms L
I 电感电流有效值及其标幺值 TxCNT 定时器 x 计数寄存器的值
I Lrms_max 电感电流有效值的最大值 TxPR 定时器 x 周期寄存器的值
J 电流密度 γ 电导率
k 折算后 2#源与 1#源幅值的比值 μ 磁导率
k min 最小的电压比 φ 移相角
K 变压器原副边匝比 ω s 开关角频率
N p 变压器原边绕组匝数 δ 电感的气隙大小
N s 变压器副边绕组匝数 Δ 导线穿透深度

标签: pwm 变换器 DC PW 控制

网友评论

发表评论

(您的评论需要经过审核才能显示)

查看所有0条评论>>

小贴士

感谢您为本站写下的评论,您的评论对其它用户来说具有重要的参考价值,所以请认真填写。

  • 类似“顶”、“沙发”之类没有营养的文字,对勤劳贡献的楼主来说是令人沮丧的反馈信息。
  • 相信您也不想看到一排文字/表情墙,所以请不要反馈意义不大的重复字符,也请尽量不要纯表情的回复。
  • 提问之前请再仔细看一遍楼主的说明,或许是您遗漏了。
  • 请勿到处挖坑绊人、招贴广告。既占空间让人厌烦,又没人会搭理,于人于己都无利。

关于好例子网

本站旨在为广大IT学习爱好者提供一个非营利性互相学习交流分享平台。本站所有资源都可以被免费获取学习研究。本站资源来自网友分享,对搜索内容的合法性不具有预见性、识别性、控制性,仅供学习研究,请务必在下载后24小时内给予删除,不得用于其他任何用途,否则后果自负。基于互联网的特殊性,平台无法对用户传输的作品、信息、内容的权属或合法性、安全性、合规性、真实性、科学性、完整权、有效性等进行实质审查;无论平台是否已进行审查,用户均应自行承担因其传输的作品、信息、内容而可能或已经产生的侵权或权属纠纷等法律责任。本站所有资源不代表本站的观点或立场,基于网友分享,根据中国法律《信息网络传播权保护条例》第二十二与二十三条之规定,若资源存在侵权或相关问题请联系本站客服人员,点此联系我们。关于更多版权及免责申明参见 版权及免责申明

;
报警