在好例子网,分享、交流、成长!
您当前所在位置:首页C/C++ 开发实例C/C++语言基础 → Computional Financial.pdf

Computional Financial.pdf

C/C++语言基础

下载此实例
  • 开发语言:C/C++
  • 实例大小:3.82M
  • 下载次数:8
  • 浏览次数:127
  • 发布时间:2021-02-17
  • 实例类别:C/C++语言基础
  • 发 布 人:lnhn
  • 文件格式:.pdf
  • 所需积分:0
 相关标签: COM fi co IO NC

实例介绍

【实例简介】Computational_Finance_Numerical_Methods.pdf

【实例截图】

from clipboard

【核心代码】

Contents
Preface xi
Part I Using Numerical Software Components within Microsoft Windows 1
1 Introduction 3
2 Dynamic Link Libraries(DLLs) 6
2.1 Visual Basic and Excel VBA 6
2.2 VB.NET 16
2.3 C# 21
3 ActiveX and COM 28
3.1 Introduction 28
3.2 The COM interface IDispatch 30
3.3 Type libraries 31
3.4 Using IDispatch 31
3.5 ActiveX controls and the Internet 33
3.6 Using ActiveX components on a Web page 34
4 A financial derivative pricing example 38
4.1 Interactive user-interface 38
4.2 Language user-interface 38
4.3 Use within Delphi 41
5 ActiveX componentsand numerical optimization 44
5.1 Ray tracing example 44
5.2 Portfolio allocation example 49
5.3 Numerical optimization within Microsoft Excel 51
6 XML and transformation using XSL 54
6.1 Introduction 54
6.2 XML 55
//SYS21///INTEGRAS/ELS/PAGINATION/ELSEVIER UK/CMF/3B2/FINALS_21-11-03/PRELIMS.3D – 8 – [1–14/14]
21.11.2003 2:55PM
6.3 XML schema 57
6.4 XSL 59
6.5 Stock market data example 60
7 Epilogue 64
7.1 Wrapping C with Cþþ for OO numerics in .NET 64
7.2 Final remarks 73
Part II Pricing Assets 75
8 Introduction 77
8.1 An introduction to options and derivatives 77
8.2 Brownian motion 78
8.3 A Brownian model of asset price movements 81
8.4 Ito’s lemma in one dimension 83
8.5 Ito’s lemma in many dimensions 84
9 Analytic methods and single asset European options 87
9.1 Introduction 87
9.2 Put–call parity 88
9.3 Vanilla options and the Black–Scholes model 90
9.4 Barrier options 110
10 Numeric methods and single asset American options 116
10.1 Introduction 116
10.2 Perpetual options 116
10.3 Approximations for vanilla American options 121
10.4 Lattice methods for vanilla options 137
10.5 Implied lattice methods 159
10.6 Grid methods for vanilla options 177
10.7 Pricing American options using a stochastic lattice 212
11 Monte Carlo simulation 221
11.1 Introduction 221
11.2 Pseudorandomand quasirandomsequences 222
11.3 Generation of multivariate distributions: independent variates 229
11.4 Generation of multivariate distributions: correlated variates 234
12 Multiasset European and American options 247
12.1 Introduction 247
12.2 The multiasset Black–Scholes equation 247
12.3 Multidimensional Monte Carlo methods 248
12.4 Multidimensional lattice methods 253
12.5 Two asset options 257
viii Contents
//SYS21///INTEGRAS/ELS/PAGINATION/ELSEVIER UK/CMF/3B2/FINALS_21-11-03/PRELIMS.3D – 9 – [1–14/14]
21.11.2003 2:55PM
12.6 Three asset options 267
12.7 Four asset options 272
13 Dealing with missing data 274
13.1 Introduction 274
13.2 Iterative multiple linear regression, MREG 275
13.3 The EM algorithm278
Part III Financial Econometrics285
14 Introduction 287
14.1 Asset returns 289
14.2 Nonsynchronous trading 291
14.3 Bid-ask spread 293
14.4 Models of volatility 294
14.5 Stochastic autoregressive volatility, ARV 296
14.6 Generalized hyperbolic Levy motion 297
15 GARCH models301
15.1 Box Jenkins models 301
15.2 Gaussian Linear GARCH 303
15.3 The IGARCH model 309
15.4 The GARCH-M model 309
15.5 Regression-GARCH and AR-GARCH 310
16 Nonlinear GARCH 311
16.1 AGARCH-I 313
16.2 AGARCH-II 316
16.3 GJR–GARCH 317
17 GARCH conditional probability distributions 319
17.1 Gaussian distribution 319
17.2 Student’s t distribution 321
17.3 General error distribution 323
18 Maximum likelihood parameter estimation 327
18.1 The conditional log likelihood 327
18.2 The covariance matrix of the parameter estimates 328
18.3 Numerical optimization 332
18.4 Scaling the data 334
19 Analytic derivativesof the log likelihood 336
19.1 The first derivatives 336
19.2 The second derivatives 339
Contents ix
//SYS21///INTEGRAS/ELS/PAGINATION/ELSEVIER UK/CMF/3B2/FINALS_21-11-03/PRELIMS.3D – 10 – [1–14/14]
21.11.2003 2:55PM
20 GJR–GARCH algorithms344
20.1 Initial estimates and pre-observed values 344
20.2 Gaussian distribution 346
20.3 Student’s t distribution 350
21 GARCH software 353
21.1 Expected sofware capabilities 353
21.2 Testing GARCH software 354
22 GARCH process identification 360
22.1 Likelihood ratio test 360
22.2 Significance of the estimated parameters 360
22.3 The independence of the standardized residuals 360
22.4 The distribution of the standardized residuals 361
22.5 Modelling the S&P 500 index 362
22.6 Excel demonstration 364
22.7 Internet Explorer demonstration 368
23 Multivariate time series 371
23.1 Principal component GARCH 371
Appendices375
A Computer code for Part I 377
A.1 The ODL file for the derivative pricing control 377
B Some more option pricing formulae 379
B.1 Binary options 379
B.2 Option to exchange one asset for another 379
B.3 Lookback options 380
C Derivation of the Greeksfor vanilla European options 381
C.1 Introduction 381
C.2 Gamma 382
C.3 Delta 383
C.4 Theta 383
C.5 Rho 384
C.6 Vega 385
D Multiasset binomial lattices 386
D.1 Truncated two asset binomial lattice 386
D.2 Recursive two asset binomial lattice 388
D.3 Four asset jump probabilities 391
x Contents
//SYS21///INTEGRAS/ELS/PAGINATION/ELSEVIER UK/CMF/3B2/FINALS_21-11-03/PRELIMS.3D – 11 – [1–14/14]
21.11.2003 2:55PM
E Derivation of the conditional mean and covariance for a
multivariate normal distribution 393
F Standard statistical results 395
F.1 The law of large numbers 395
F.2 The central limit theorem 395
F.3 The mean and variance of linear functions of random variables 396
F.4 Standard algorithms for the mean and variance 397
F.5 The Hanson and West algorithmfor the mean and variance 399
F.6 Jensen’s inequality 401
G Derivation of barrier option integrals403
G.1 The down and out call 403
G.2 The up and out call 406
H Algorithmsfor an AGARCH-I process 410
H.1 Gaussian distribution 410
H.2 Student’s t distribution 413
I The general error distribution 417
I.1 Value of  for variance hi 417
I.2 The kurtosis 417
I.3 The distribution when the shape parameter, a is very large 418
J The Student’s t distribution 420
J.1 The kurtosis 420
K Mathematical reference 423
K.1 Standard integrals 423
K.2 Gamma function 423
K.3 The cumulative normal distribution function 424
K.4 Arithmetic and geometric progressions 425
L The stability of the Black–Scholes finite-difference schemes 426
L.1 The general case 426
L.2 The log transformation and a uniform grid 426
Glossary of terms 429
Computing reading list 430
Mathematics and finance references 432
Index 439

标签: COM fi co IO NC

实例下载地址

Computional Financial.pdf

不能下载?内容有错? 点击这里报错 + 投诉 + 提问

好例子网口号:伸出你的我的手 — 分享

网友评论

发表评论

(您的评论需要经过审核才能显示)

查看所有0条评论>>

小贴士

感谢您为本站写下的评论,您的评论对其它用户来说具有重要的参考价值,所以请认真填写。

  • 类似“顶”、“沙发”之类没有营养的文字,对勤劳贡献的楼主来说是令人沮丧的反馈信息。
  • 相信您也不想看到一排文字/表情墙,所以请不要反馈意义不大的重复字符,也请尽量不要纯表情的回复。
  • 提问之前请再仔细看一遍楼主的说明,或许是您遗漏了。
  • 请勿到处挖坑绊人、招贴广告。既占空间让人厌烦,又没人会搭理,于人于己都无利。

关于好例子网

本站旨在为广大IT学习爱好者提供一个非营利性互相学习交流分享平台。本站所有资源都可以被免费获取学习研究。本站资源来自网友分享,对搜索内容的合法性不具有预见性、识别性、控制性,仅供学习研究,请务必在下载后24小时内给予删除,不得用于其他任何用途,否则后果自负。基于互联网的特殊性,平台无法对用户传输的作品、信息、内容的权属或合法性、安全性、合规性、真实性、科学性、完整权、有效性等进行实质审查;无论平台是否已进行审查,用户均应自行承担因其传输的作品、信息、内容而可能或已经产生的侵权或权属纠纷等法律责任。本站所有资源不代表本站的观点或立场,基于网友分享,根据中国法律《信息网络传播权保护条例》第二十二与二十三条之规定,若资源存在侵权或相关问题请联系本站客服人员,点此联系我们。关于更多版权及免责申明参见 版权及免责申明

;
报警